Guidelines for Geometric Design of Very Low-Volume Local Roads (ADT ≤400)

2001
Guidelines for
Geometric
Design of Very
Low-Volume
Local Roads
(ADT ≤ 400)

American Association of State Highway
and Transportation Officials

444 North Capitol St., N.W., Suite 249
Washington, DC 20001

(202) 624-5800
www.transportation.org
American Association of State Highway and Transportation Officials
Executive Committee
2001–2002

President: E. Dean Carlson, Kansas
Vice President: Brad Mallory, Pennsylvania
Secretary/Treasurer: Larry King, Pennsylvania
AASHTO Executive Director: John C. Horsley, Washington, D.C.

Regional Representatives

Region I: William Ankner, Rhode Island
Joseph Boardman, New York

Region II: W. Lyndo Tippett, North Carolina
Bruce Saltsman, Tennessee

Region III: J. Bryan Nicol, Indiana
Kirk Brown, Illinois

Region IV: Pete Rahn, New Mexico
Joseph Perkins, Alaska
## Task Force on Geometric Design 2001

### Members

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terry L. Abbott</td>
<td>California</td>
<td>1999 – 2000</td>
</tr>
<tr>
<td>Reza Amini</td>
<td>Oklahoma</td>
<td>2001 – Present</td>
</tr>
<tr>
<td>Don T. Arkle</td>
<td>Alabama</td>
<td>1991 – Present</td>
</tr>
<tr>
<td>Ray Ballentine</td>
<td>Mississippi</td>
<td>1997 – 1999</td>
</tr>
<tr>
<td>Paul Bercich</td>
<td>Wyoming</td>
<td>1995 – Present</td>
</tr>
<tr>
<td>James O. Brewer</td>
<td>Kansas</td>
<td>1986 – Present</td>
</tr>
<tr>
<td>Jerry Champa</td>
<td>California</td>
<td>1997 – 1999</td>
</tr>
<tr>
<td>Philip J. Clark</td>
<td>New York</td>
<td>1992 – Present</td>
</tr>
<tr>
<td>Susan Davis</td>
<td>Oklahoma</td>
<td>1994 – 1995</td>
</tr>
<tr>
<td>Charles A. Goessel</td>
<td>New Jersey</td>
<td>1986 – Present</td>
</tr>
<tr>
<td>Dennis A. Grylicki</td>
<td>National Association of County Engineers</td>
<td>1992 – 1999</td>
</tr>
<tr>
<td>Irving Harris</td>
<td>Mississippi</td>
<td>1992 – 1997</td>
</tr>
<tr>
<td>David Hutchison</td>
<td>National League of Cities</td>
<td>1999 – Present</td>
</tr>
<tr>
<td>Jeff Jones</td>
<td>Tennessee</td>
<td>2001 – Present</td>
</tr>
<tr>
<td>Wayne Kinder</td>
<td>Nevada</td>
<td>2001 – Present</td>
</tr>
<tr>
<td>John LaPlante</td>
<td>American Public Works Association</td>
<td>1989 – Present</td>
</tr>
<tr>
<td>Ken Lazar</td>
<td>Illinois</td>
<td>1990 – 2000</td>
</tr>
<tr>
<td>Donald A. Lyford</td>
<td>New Hampshire</td>
<td>1992 – Present</td>
</tr>
<tr>
<td>Mark A. Marek</td>
<td>Texas</td>
<td>1986 – Present</td>
</tr>
<tr>
<td>Terry H. Otterness</td>
<td>Arizona</td>
<td>1997 – 2001</td>
</tr>
<tr>
<td>Steven R. Oxoby</td>
<td>Nevada</td>
<td>1993 – 2001</td>
</tr>
<tr>
<td>Randy Peters</td>
<td>Nebraska</td>
<td>1993 – 1998</td>
</tr>
<tr>
<td>John Pickering</td>
<td>Mississippi</td>
<td>1999 – Present</td>
</tr>
<tr>
<td>William A. Prosser</td>
<td>FHWA, Secretary</td>
<td>1995 – Present</td>
</tr>
<tr>
<td>Norman H. Roush</td>
<td>West Virginia</td>
<td>1979 – Present</td>
</tr>
<tr>
<td>Joe Ruffer</td>
<td>National League of Cities</td>
<td>1999 – Present</td>
</tr>
<tr>
<td>John Sacksteder</td>
<td>Kentucky</td>
<td>1991 – 2000</td>
</tr>
<tr>
<td>Larry Sutherland</td>
<td>Ohio</td>
<td>1991 – Present</td>
</tr>
<tr>
<td>Karla Sutliff</td>
<td>California</td>
<td>2001 – Present</td>
</tr>
<tr>
<td>Charlie V. Trujillo</td>
<td>New Mexico</td>
<td>1998 – Present</td>
</tr>
<tr>
<td>Robert L. Walters</td>
<td>Arkansas, Chairman</td>
<td>1982 – Present</td>
</tr>
<tr>
<td>Ted Watson</td>
<td>Nebraska</td>
<td>1998 – Present</td>
</tr>
</tbody>
</table>
AASHTO Highway Subcommittee on Design
2001–2002

Dr. Kam K. Movassaghi, LOUISIANA, Chair
Susan Martinovich, NEVADA, Vice-Chair
Dwight A. Horne, FHWA, Secretary

Ken Kobetsky, P.E. and Jim McDonnell, P.E., AASHTO, Staff Liaisons

ALABAMA— Arkle, Don T.
Chief, Design Bureau
Alabama Department of Transportation
1409 Coliseum Boulevard
Montgomery, AL 36130-3050

ALABAMA— Walker, Steven E.
Assistant Chief Design Engineer
Alabama Department of Transportation
1409 Coliseum Boulevard
Montgomery, AL 36130-3050

ALASKA— Hogins, Gary
Chief of Design & Construction Standards
Alaska Department of Transportation & Public Facilities
3132 Channel Drive
Juneau, AK 99801-7898

ARIZONA— Louis, John L.
Assistant State Engineer, Roadway Group
Arizona Department of Transportation
205 South 17th Ave., Mail Drop 611E
Phoenix, AZ 85007-3213

ARKANSAS— Loe, Dale F.
Assistant Chief Engineer—Design
Arkansas State Highway & Transportation Department
P.O. Box 2261, 10324 Interstate 30
State Highway Building
Little Rock, AR 72203-2261

ARKANSAS— McConnell, Phillip L.
Engineer of roadway Design
Arkansas State Highway & Transportation Department
P.O. Box 2261, 10324 Interstate 30
State Highway Building
Little Rock, AR 72203-2261

CALIFORNIA— Sutliff, Karla
Acting Chief, Division of Design
California Department of Transportation
1120 N Street, Room 2106 (M.S. #28)
Sacramento, CA 95814

COLORADO— Van De Wege, Dean
Project Development Branch Manager
Colorado Department of Transportation
4201 East Arkansas Avenue, Room 406
Denver, CO 80222

CONNECTICUT— Bard, Carl F.
Principal Engineer
Connecticut Department of Transportation
P.O. Box 317546/2800 Berlin Turnpike
Newington, CT 06131-7546

CONNECTICUT— Smith, Bradley J.
Manager of State Design
Connecticut Department of Transportation
P.O. Box 317546/2800 Berlin Turnpike
Newington, CT 06131-7546

DELAWARE— Angelo, Michael A.
Assistant Director, Design Support
Delaware Department of Transportation
P.O. Box 778, Bay Road, Route 113
Dover, DE 19903-0778

DELAWARE— Canning, Kevin
Supervising Engineer—Road Design
Delaware Department of Transportation
P.O. Box 778, Bay Road, Route 113
Dover, DE 19903-0778

DELAWARE— Simmons, Michael H.
Road Design Engineer
Delaware Department of Transportation
P.O. Box 778, Bay Road, Route 113
Dover, DE 19903-0778

FLORIDA— Blanchard, Brian
State Roadway Design Engineer
Florida Department of Transportation
605 Suwannee Street, MS 32
Tallahassee, FL 32399-0450

FLORIDA— Hattaway, Billy L.
Director, Office of Design
Florida Department of Transportation
605 Suwannee Street, MS 38
Tallahassee, FL 32311-0450

FLORIDA— Mills, Jim
Roadway Design Engineer
Florida Department of Transportation
605 Suwannee Street
Tallahassee, FL 32399-0450

GEORGIA— Buchan, Ben
Georgia Department of Transportation
2 Capitol Square, Room 356
Atlanta, GA 30334

GEORGIA— Kennerly, James
State Road and Airport Design Engineer
Georgia Department of Transportation
2 Capitol Square, Room 444
Atlanta, GA 30334

GEORGIA— Palladi, Joseph
State Urban and Multi-Modal Design Engineer
Georgia Department of Transportation
No. 2 Capitol Square, Room 356
Atlanta, GA 30334

HAWAII— Abe, Casey
Engineer Program Manager, Design Branch, Highways Division
Hawaii Department of Transportation
601 Kamokila Boulevard, Room 688A
Kapolei, HI 96707
<table>
<thead>
<tr>
<th>State</th>
<th>Name</th>
<th>Occupation</th>
<th>Organization</th>
<th>Address</th>
<th>City</th>
<th>ZIP Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hawaii</td>
<td>Fronda, Julius</td>
<td>Highway Design Engineer</td>
<td>Hawaii Department of Transportation</td>
<td>601 Kapolei Boulevard, Room 609 Kapiol, HI 96707</td>
<td>Kapiol</td>
<td>96707</td>
</tr>
<tr>
<td>Idaho</td>
<td>Hutchinson, Steven C.</td>
<td>Assistant Chief Engineer—Development</td>
<td>Idaho Transportation Department</td>
<td>P.O. Box 7129, 3311 W. State Street Boise, ID 83707</td>
<td>Boise</td>
<td>83707</td>
</tr>
<tr>
<td>Idaho</td>
<td>Thomas, Loren D.</td>
<td>Roadway Design Engineer</td>
<td>Idaho Transportation Department</td>
<td>P.O. Box 7129, 3311 W. State Street Boise, ID 83707</td>
<td>Boise</td>
<td>83707</td>
</tr>
<tr>
<td>Illinois</td>
<td>Hine, Michael</td>
<td>Chief of Design and Environment</td>
<td>Illinois Department of Transportation</td>
<td>2300 S. Dirksen Parkway Springfield, IL 62764</td>
<td>Springfield</td>
<td>62764</td>
</tr>
<tr>
<td>Indiana</td>
<td>Klika, Phelps H.</td>
<td>Director, Division of Design</td>
<td>Indiana Department of Transportation</td>
<td>100 N. Senate Avenue, Room N642 Indianapolis, IN 46204-2217</td>
<td>Indianapolis</td>
<td>46204</td>
</tr>
<tr>
<td>Iowa</td>
<td>Dillavou, Mitch</td>
<td>Director, Office of Design</td>
<td>Iowa Department of Transportation</td>
<td>800 Lincoln Way Ames, IA 50010</td>
<td>Ames</td>
<td>50010</td>
</tr>
<tr>
<td>Iowa</td>
<td>Little, David</td>
<td>Assistant District Engineer</td>
<td>Iowa Department of Transportation</td>
<td>1420 Fourth Street, SE Mason City, IA 50402-0742</td>
<td>Mason City</td>
<td>50402-0742</td>
</tr>
<tr>
<td>Iowa</td>
<td>Stein, Will</td>
<td>Methods Engineer</td>
<td>Iowa Department of Transportation</td>
<td>800 Lincoln Way Ames, IA 50010</td>
<td>Ames</td>
<td>50010</td>
</tr>
<tr>
<td>Kansas</td>
<td>Adams, Richard G.</td>
<td>Road Design Engineer</td>
<td>Kansas Department of Transportation</td>
<td>915 Harrison Ave., 9th Floor Topeka, KS 66612-1568</td>
<td>Topeka</td>
<td>66612-1568</td>
</tr>
<tr>
<td>Kansas</td>
<td>Armstrong, LaMonte</td>
<td>Road Design Engineer</td>
<td>Kansas Department of Transportation</td>
<td>Docking State Office Building 915 Harrison Ave., 9th Floor Topeka, KS 66612-1568</td>
<td>Topeka</td>
<td>66612-1568</td>
</tr>
<tr>
<td>Kansas</td>
<td>Brewer, James O.</td>
<td>Engineering Manager—State Road Office</td>
<td>Kansas Department of Transportation</td>
<td>Docking State Office Building 915 Harrison Ave., 9th Floor Topeka, KS 66612-1568</td>
<td>Topeka</td>
<td>66612-1568</td>
</tr>
<tr>
<td>Kentucky</td>
<td>Kratt, David</td>
<td>Location Branch Manager</td>
<td>Kentucky Transportation Cabinet</td>
<td>Division Of Highway Design High and Clinton Streets, 6th Floor</td>
<td>Frankfort</td>
<td>40622</td>
</tr>
<tr>
<td>Kentucky</td>
<td>Sharpe, Gary</td>
<td>Director, Division of Highway Design</td>
<td>Kentucky Transportation Cabinet</td>
<td>501 High Street, 6th Floor</td>
<td>Frankfort</td>
<td>40622</td>
</tr>
<tr>
<td>Kentucky</td>
<td>Sperry, Kenneth R.</td>
<td>Assistant State Highway Engineer</td>
<td>Kentucky Transportation Cabinet, State Highway</td>
<td>Engineer’s Office 501 High Street, State Office Building</td>
<td>Frankfort</td>
<td>40622</td>
</tr>
<tr>
<td>Louisiana</td>
<td>Israel, N. Kent</td>
<td>Roadway Design Engineer Administrator</td>
<td>Louisiana Department of Transportation and</td>
<td>P.O. Box 94245, 1201 Capitol Access Road Baton Rouge, LA 70804-9245</td>
<td>Baton Rouge</td>
<td>70804-9245</td>
</tr>
<tr>
<td>Louisiana</td>
<td>Kalivoda, Nicholas</td>
<td>Traffic and Geometrics Design Engineer</td>
<td>Louisiana Department of Transportation and</td>
<td>P.O. Box 94245, 1201 Capitol Access Road Baton Rouge, LA 70804-9245</td>
<td>Baton Rouge</td>
<td>70804-9245</td>
</tr>
<tr>
<td>Maine</td>
<td>Casey, Jerry A.</td>
<td>Program Manager—Urban and Arterial</td>
<td>Maine Department of Transportation</td>
<td>Transportation Building, State House Station 16</td>
<td>Augusta</td>
<td>04333-0016</td>
</tr>
<tr>
<td>Maryland</td>
<td>Douglass, Robert D.</td>
<td>Deputy Chief Engineer-Highway Development</td>
<td>Maryland Department of Transportation, State Highway Administration</td>
<td>707 N. Calvert Street, Mail Stop C102</td>
<td>Baltimore</td>
<td>21202</td>
</tr>
<tr>
<td>Maryland</td>
<td>McClelland, Kirk G.</td>
<td>Highway Design Division Chief</td>
<td>Maryland Department of Transportation, State Highway Administration</td>
<td>707 N. Calvert Street</td>
<td>Baltimore</td>
<td>21202</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>Blundo, John</td>
<td>Deputy Chief Engineer, Highway Engineering</td>
<td>Massachusetts Highway Department</td>
<td>10 Park Plaza, Room 6340</td>
<td>Boston</td>
<td>02116-3973</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>Wood, Stanley</td>
<td>Highway Location and Design Engineer</td>
<td>Massachusetts Highway Department</td>
<td>10 Park Plaza</td>
<td>Boston</td>
<td>02116</td>
</tr>
<tr>
<td>Michigan</td>
<td>Miller, Paul F.</td>
<td>Engineer of Design</td>
<td>Michigan Department of Transportation, Design Division</td>
<td>State Transportation Building 425 W. Ottawa Street, P.O. Box 30050</td>
<td>Lansing</td>
<td>48909</td>
</tr>
<tr>
<td>Minnesota</td>
<td>Elsky, Richard</td>
<td>State Design Engineer</td>
<td>Minnesota Department of Transportation</td>
<td>Transportation Building, MS 670 395 John Ireland Boulevard</td>
<td>St. Paul</td>
<td>55155-1899</td>
</tr>
</tbody>
</table>
MINNESOTA— Gerdes, Delbert
Director, Technical Support
Minnesota Department of Transportation
Transportation Building, MS 675, 395
John Ireland Boulevard
St. Paul, MN 55155-1899

MISSISSIPPI— Pickering, John B.
Roadway Design Engineer
Mississippi Department of Transportation
P.O. Box 1850, 401 North West Street
Jackson, MS 39215-1850

MISSISSIPPI— Ruff, Wendel T.
Assistant Chief Engineer—Preconstruction
Mississippi Department of Transportation
P.O. Box 1850, 401 North West Street
Jackson, MS 39215-1850

MISSOURI— Heckemeyer, Diane
State Design Engineer
Missouri Department of Transportation
105 West Capitol Avenue, P.O. Box 270
Jefferson City, MO 65101

MISSOURI— Nichols, David B.
Director of Project Development
Missouri Department of Transportation
105 W. Capitol Avenue, P.O. Box 270
Jefferson City, MO 65101

MONTANA— Peil, Carl S.
Preconstruction Engineer
Montana Department of Transportation
P.O. Box 201001, 2701 Prospect Avenue
Helena, MT 59620-1001

MONTANA— Williams, Ron
Road Design Engineer
Montana Department of Transportation
P.O. Box 201001, 2701 Prospect Avenue
Helena, MT 59620-1001

NEBRASKA— Allyn, Dawn
Nebraska Department of Roads
1500 Nebraska Highway 2
P.O. Box 94759
Lincoln, NE 68509-4759

NEBRASKA— Poppe, Eldon D.
Roadway Design Engineer
Nebraska Department of Roads
1500 Nebraska Highway 2
P.O. Box 94759
Lincoln, NE 68509-4759

NEBRASKA— Turek, Don
Assistant Design Engineer
Nebraska Department of Roads
1500 Nebraska Highway 2
P.O. Box 94759
Lincoln, NE 68509-4759

NEVADA— Kinder, Wayne
Chief Road Design Engineer
Nevada Department of Transportation
1263 S. Stewart Street
Carson City, NV 89712

NEW HAMPSHIRE— Green, Craig A.
Administrator, Bureau of Highway Design
New Hampshire Department of Transportation
John O. Morton Building, P.O. Box 483
1 Hazen Drive
Concord, NH 03301-0483

NEW JERSEY— Dunne, Richard W.
Director, Design Services
New Jersey Department of Transportation
1035 Parkway Avenue, CN 600
Trenton, NJ 08625-0600

NEW JERSEY— Eisdorfer, Arthur J.
Manager, Bureau of Civil Engineering
New Jersey Department of Transportation
1035 Parkway Avenue, CN 600
Trenton, NJ 08625-0600

NEW JERSEY— Miller, Charles
Executive Assistant, Office of the Director
New Jersey Department of Transportation,
Division Of Design Services
1035 Parkway Avenue, CN 600
Trenton, NJ 08625-0600

NEW MEXICO— Maestas, Roy
Chief, Internal Design Bureau
New Mexico State Highway and Transportation Department
P.O. Box 1149, 1120 Cerrillos Road
Santa Fe, NM 87504-1149

NEW MEXICO— Trujillo, Charlie V.
Deputy Secretary of Transportation Planning and Design
New Mexico State Highway and Transportation Department
P.O. Box 1149, 1120 Cerrillos Road
Santa Fe, NM 87504-1149

NEW MEXICO— Valerio, Max
Consultant Design Program Manager
New Mexico State Highway and Transportation Department
P.O. Box 1149, 1120 Cerrillos Road
Santa Fe, NM 87504-1149

NEW YORK— Clark, Phillip J.
Deputy Chief Engineer/Director, Design Division
New York Department of Transportation
Building 5, State Office Campus
1220 Washington Avenue
Albany, NY 12232-0750

NEW YORK— D’Angelo, Daniel
Director, Design Quality Assurance Bureau
New York Department of Transportation
Building 5, State Office Campus
1220 Washington Avenue
Albany, NY 12232-0748

NEW YORK— Alford, John E.
State Roadway Design Engineer
North Carolina Department of Transportation
P.O. Box 25201, 1 South Wilmington Street
Raleigh, NC 27611-5201

NORTH CAROLINA— Barbour, Deborah M.
State Design Engineer
North Carolina Department of Transportation
P.O. Box 25201, 1 South Wilmington Street
Raleigh, NC 27611-5201

NORTH CAROLINA— Hill, Len
Deputy Administrator, Pre-Construction
North Carolina Department of Transportation
P.O. Box 25201, 1 South Wilmington Street
Raleigh, NC 27611-5201
NORTH DAKOTA— Birst, Kenneth E.
Design Engineer
North Dakota Department of Transportation
608 E. Boulevard Avenue
Bismarck, ND 58505-0700

OHIO— Misel, Cash
Assistant Director and Chief Engineer
Ohio Department of Transportation
1980 West Broad Street
Columbus, OH 43223-1102

OHIO— Sutherland, Larry F.
Deputy Director, roadway Engineering
Ohio Department of Transportation
1980 West Broad Street
Columbus, OH 43223

OKLAHOMA— Senkowski, Christine M.
Division Engineer, Roadway Design
Oklahoma Department of Transportation
200 N. E. 21st Street, Room 2c-2
Oklahoma City, OK 73105-3204

OKLAHOMA— Taylor, Bruce E.
Chief Engineer
Oklahoma Department of Transportation
200 N. E. 21st Street
Oklahoma City, OK 73105-3204

OREGON— Greenberg, Dave
Design Unit Manager
Oregon Department of Transportation
355 Capitol Street N.E., Room 200
Salem, OR 97310

OREGON— Nelson, Catherine
Manager, Roadway Engineering Section
Oregon Department of Transportation
200 Transportation Building
Salem, OR 97310

OREGON— Scheick, Jeff
Manager, Technical Services
Oregon Department of Transportation
Transportation Building, 355 Capitol Street
Salem, OR 97310

PENNSYLVANIA— Schreiber, Dean A.
Director, Bureau of Design
Pennsylvania Department of Transportation
P.O. Box 2966
Harrisburg, PA 17105-2966

PUERTO RICO— Ramos Hernandez, Javier E.
Director, Design Area
Puerto Rico Highway and Transportation Authority
P.O. Box 42007, Minillas Station
San Juan, PR 00940-2007

RHODE ISLAND— Bennett, J. Michael
Managing Engineer, Highway Design
Rhode Island Department of Transportation
State Office Building, 2 Capitol Hill
Providence, RI 02903-1124

SOUTH CAROLINA— Kneece, Rocque L.
C Fund Manager
South Carolina Department of Transportation
Silas N. Pearman Building, 955 Park Street
Box 191
Columbia, SC 29202-0191

SOUTH CAROLINA— Pratt, Robert I.
Project Development Engineer
South Carolina Department of Transportation
Silas N. Pearman Building, 955 Park Street
Box 191
Columbia, SC 29202-0191

SOUTH CAROLINA— Walsh, John V.
Program Development Engineer
South Carolina Department of Transportation
Silas N. Pearman Building, 955 Park Street
Box 191
Columbia, SC 29202-0191

SOUTH DAKOTA— Bjorneberg, Timothy
Chief Road Design Engineer
South Dakota Department of Transportation
700 East Broadway Avenue
Pierre, SD 57501-2586

SOUTH DAKOTA— Feller, Joe
Chief Materials and Surfacing Engineer
South Dakota Department of Transportation
700 East Broadway Avenue
Pierre, SD 57501-2586

TENNESSEE— Jones, Jeff C.
Director, Design Division
Tennessee Department of Transportation
505 Deaderick Street, Suite 700
Nashville, TN 37243-0339

TENNESSEE— Zeigler, James
Director, Bureau of Planning and Development
Tennessee Department of Transportation
700 James K. Polk Building,
Fifth and Deaderick
Nashville, TN 37243-0339

TEXAS— Marek, Mark A.
Engineer of Roadway Design
Texas Department of Transportation
125 East 11th Street
Austin, TX 78701-2483

TEXAS— Wilson, Robert L.
Director, Design
Texas Department of Transportation
125 East 11th Street
Austin, TX 78701-2483

UTAH— Mohanty, P. K.
Roadway Design Engineer
Utah Department of Transportation
4501 South 2700 West
Salt Lake City, UT 84119

VERMONT— Lathrop, Donald H.
Plan Support Engineer
Vermont Agency of Transportation
State Administration Building
133 State Street
Montpelier, VT 05633-5001

VERMONT— Shattuck, Robert F.
Roadway and Traffic Design Program Manager
Vermont Agency of Transportation
State Administration Building
133 State Street
Montpelier, VT 05633-5001

VIRGINIA— Mirshahi, Mohammad
Assistant Division Administrator
Virginia Department of Transportation
1401 E. Broad Street
Richmond, VA 23219

WASHINGTON— Albin, Richard
Standards Engineer
Washington State Department of Transportation
Transportation Building
310 Maple Park, P.O. Box 47329
Olympia, WA 98504-7329
WASHINGTON— Mansfield, Cliff
State Design Engineer
Washington State Department of
Transportation
P.O. Box 47329
Olympia, WA 98504-7329

WEST VIRGINIA— Clevenger, David E.
Consultant Review Section Head
West Virginia Department of
Transportation, Engineering Division
1900 Kanawha Boulevard East, Building 5
Charleston, WV 25305-0440

WEST VIRGINIA— Epperly, Randolph T.
Deputy State Highway Engineer-Project
Development
West Virginia Department of
Transportation
1900 Kanawha Boulevard East, Building 5
Charleston, WV 25305-0440

WEST VIRGINIA— Roush, Norman H.
Deputy Commissioner of Highways
West Virginia Department of
Transportation
1900 Kanawha Boulevard East, Building 5
Charleston, WV 25305-0440

WISCONSIN— Haverberg, John E.
Director, Bureau of Highway Development
Wisconsin Department of Transportation
P.O. Box 7910
4802 Sheboygan Avenue
Madison, WI 53707-7910

WISCONSIN— Pfeiffer, Robert F.
Project Development Chief
Wisconsin Department of Transportation,
District 2, Waukesha
P.O. Box 798
Waukesha, WI 53187-0798

WYOMING— Bercich, Paul
Project Development Engineer
Wyoming Department of Transportation
P.O. Box 1708, 5300 Bishop Boulevard
Cheyenne, WY 82003-1708

DISTRICT OF COLUMBIA— Sandhu, Harbhajan S.
Chief, Design and Engineering Division
District of Columbia Department of Public
Works
2000 14th Street, N.W., 5th Floor
Washington, D.C. 20009

BRITISH COLUMBIA, CANADA— Voyer, Richard
Senior Standards and Design Engineer
British Columbia Ministry of
Transportation and Highways
5B - 940 Blanshard Street
Victoria, British Columbia V8W 3E6

ONTARIO, CANADA— Bucik, Joseph A.
Manager, Highway Design Office
Ministry of Transportation of Ontario
301 St. Paul Street
St. Catherines, Ontario L2R 7R4

© 2001 by the American Association of State Highway and Transportation Officials.
All rights reserved. Duplication is a violation of applicable law.
Preface

These Guidelines were developed as part of the continuing work of the Standing Committee on Highways. The Committee, then titled the Committee on Planning and Design Policies, was established in 1937 to formulate and recommend highway engineering policies. This Committee has developed *A Policy on Geometric Design of Rural Highways*, 1954 and 1965 editions; *A Policy on Arterial Highways in Urban Areas*, 1957; *A Policy on Design of Urban Highways and Arterial Streets*, 1973; *Geometric Design Standards for Highways Other Than Freeways*, 1969; *A Policy on Geometric Design of Highways and Streets*, 1984, 1990, 1994, and 2001; *A Policy on Design Standards—Interstate System*, 1956, 1967, and 1991; and a number of other AASHO and AASHTO policy and “guide” publications.

An AASHTO publication is typically developed through the following steps: (1) The Committee selects subjects and broad outlines of material to be covered. (2) The appropriate subcommittee and its task forces, in this case, the Subcommittee on Design and its Task Force on Geometric Design, assemble and analyze relevant data and prepare a tentative draft. Working meetings are held and revised drafts are prepared, as necessary, and reviewed by the Subcommittee, until agreement is reached. (3) The manuscript is then submitted for approval by the Standing Committee on Highways. Standards and policies must be adopted by a two-thirds vote by the Member Departments before publication. During the developmental process, comments are sought and considered from all the states, the Federal Highway Administration, and representatives of the American Public Works Association, the National Association of County Engineers, the National League of Cities, and other interested parties.
# Table of Contents

Preface ........................................................................................................................................... xi
List of Exhibits.......................................................................................................................... xix
Foreword ..................................................................................................................................... xxi

## CHAPTER TITLES

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction ..................................................................</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Framework for Design Guidelines</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Design Philosophy</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Design Guidelines</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>Design Examples</td>
<td>53</td>
</tr>
</tbody>
</table>

## Chapter 1

### INTRODUCTION

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition of Very Low-Volume Local Roads</td>
<td>1</td>
</tr>
<tr>
<td>Scope of Guidelines</td>
<td>2</td>
</tr>
<tr>
<td>Relationship to Other AASHTO Policies</td>
<td>3</td>
</tr>
<tr>
<td>Organization of This Document</td>
<td>3</td>
</tr>
</tbody>
</table>

## Chapter 2

### FRAMEWORK FOR DESIGN GUIDELINES

<table>
<thead>
<tr>
<th>Area Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Classification</td>
<td>5</td>
</tr>
<tr>
<td>Rural Major Access Roads</td>
<td>6</td>
</tr>
<tr>
<td>Rural Minor Access Roads</td>
<td>6</td>
</tr>
<tr>
<td>Rural Industrial/Commercial Access Roads</td>
<td>7</td>
</tr>
<tr>
<td>Rural Agricultural Access Roads</td>
<td>7</td>
</tr>
<tr>
<td>Rural Recreational and Scenic Roads</td>
<td>7</td>
</tr>
<tr>
<td>Rural Resource Recovery Roads</td>
<td>8</td>
</tr>
<tr>
<td>Urban Major Access Streets</td>
<td>8</td>
</tr>
<tr>
<td>Urban Residential Streets</td>
<td>8</td>
</tr>
<tr>
<td>Urban Industrial/Commercial Access Streets</td>
<td>8</td>
</tr>
<tr>
<td>Other Urban Facilities</td>
<td>9</td>
</tr>
<tr>
<td>Roads that Meet the Definition of More than One Functional Subclass</td>
<td>9</td>
</tr>
<tr>
<td>Design Speed/Operating Speed</td>
<td>9</td>
</tr>
<tr>
<td>Traffic Volumes</td>
<td>9</td>
</tr>
</tbody>
</table>
Chapter 3
DESIGN PHILOSOPHY

Unique Characteristics of Very Low-Volume Local Roads ............................................. 11
Basis for Design Recommendations ........................................................................... 11
Development of Design Guidelines through Risk Assessment ...................................... 13
  Risk Assessment Approach .................................................................................... 13
  Expected Systemwide Safety Effects .................................................................. 15
Guidelines for New Construction Versus Improvement of Existing Roads ..................... 15
Design Flexibility ...................................................................................................... 16

Chapter 4
DESIGN GUIDELINES

Cross Section ............................................................................................................... 17
  New Construction.................................................................................................... 17
    Very Low-Volume Local Roads in Rural Areas .................................................. 17
    Very Low-Volume Local Roads in Urban Areas .................................................. 19
  Existing Roads ....................................................................................................... 20
Bridge Width ............................................................................................................. 20
  New Construction.................................................................................................... 20
  Existing Bridges .................................................................................................... 21
Horizontal Alignment ................................................................................................ 21
  New Construction.................................................................................................... 24
    Rural Major Access, Minor Access, and Recreational and Scenic Roads
      (250 Vehicles per Day or Less) ........................................................................ 25
    Rural Major Access, Minor Access, and Recreational and Scenic Roads
      (250 to 400 Vehicles per Day) ........................................................................ 26
  Rural Industrial/Commercial Access, Agricultural Access, and Resource Recovery
    Roads ...................................................................................................................... 27
  Urban Major Access Streets (250 Vehicles per Day or Less) and Urban Residential
    Streets .................................................................................................................. 28
  Urban Major Access Streets (250 to 400 Vehicles per Day) .................................. 29
  Urban Industrial/Commercial Access Streets ........................................................... 29
  Superelevation and Superelevation Transitions ....................................................... 29
  Existing Roads ....................................................................................................... 30
Stopping Sight Distance .............................................................................................. 30
  New Construction.................................................................................................... 32
    Sight Distance on Horizontal Curves .................................................................. 33
    Sight Distance on Vertical Curves ....................................................................... 33
    Crest Vertical Curves ......................................................................................... 37
    Sag Vertical Curves ............................................................................................ 38
  Existing Roads ........................................................................................................ 38
Intersection Sight Distance .......................................................................................... 40
  General Considerations ......................................................................................... 40
  Clear Sight Triangles .............................................................................................. 41
Chapter 5
DESIGN EXAMPLES

Example 1 ................................................................. 53
  Cross Section.......................................................... 54
  Horizontal Alignment.............................................. 54
  Maximum Friction Factor and Minimum Radius ........ 54
  Superelevation ....................................................... 54
  Superelevation Transition ....................................... 55
  Stopping Sight Distance ......................................... 55
  Design Sight Distance ........................................... 55
  Crest Vertical Curves ............................................ 55
  Sag Vertical Curves ............................................... 55
  Horizontal Curves ................................................ 55
  Intersection Sight Distance .................................... 55
  Roadside Design .................................................. 56
  Clear Zone Width .................................................. 56
  Traffic Barriers ..................................................... 56
  Other Design Features .......................................... 56

Example 2 ................................................................. 56
  Cross Section.......................................................... 57
  Horizontal Alignment.............................................. 57
  Stopping Sight Distance ......................................... 57
  Intersection Sight Distance .................................... 58
  Roadside Design .................................................. 58

Example 3 ................................................................. 58
  Cross Section.......................................................... 58
  Horizontal Alignment.............................................. 59
  Stopping Sight Distance ......................................... 59
  Intersection Sight Distance .................................... 59
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Sight Distance</td>
<td>68</td>
</tr>
<tr>
<td>Crest Vertical Curves</td>
<td>68</td>
</tr>
<tr>
<td>Sag Vertical Curves</td>
<td>68</td>
</tr>
<tr>
<td>Horizontal Curves</td>
<td>69</td>
</tr>
<tr>
<td>Intersection Sight Distance</td>
<td>69</td>
</tr>
<tr>
<td>Roadside Design</td>
<td>69</td>
</tr>
<tr>
<td>Clear Zone Width</td>
<td>69</td>
</tr>
<tr>
<td>Traffic Barriers</td>
<td>69</td>
</tr>
<tr>
<td>Other Design Features</td>
<td>69</td>
</tr>
<tr>
<td>Example 8</td>
<td>69</td>
</tr>
<tr>
<td>Cross Section</td>
<td>70</td>
</tr>
<tr>
<td>Horizontal Alignment</td>
<td>70</td>
</tr>
<tr>
<td>Maximum Friction Factor and Minimum Radius</td>
<td>70</td>
</tr>
<tr>
<td>Stopping Sight Distance</td>
<td>71</td>
</tr>
<tr>
<td>Intersection Sight Distance</td>
<td>71</td>
</tr>
<tr>
<td>Roadside Design</td>
<td>71</td>
</tr>
<tr>
<td>References</td>
<td>72</td>
</tr>
</tbody>
</table>
LIST OF EXHIBITS

1. Guidelines for Total Roadway Width for New Construction of Very Low-Volume Local Roads in Rural Areas ................................................................. 18
2. Guidelines for Total Roadway Width for New Construction of Urban Residential Streets ........................................................................................................ 20
3. Maximum Side Friction Factor and Minimum Radius for Horizontal Curve Design on Higher Volume Roadways ................................................................. 23
4. Maximum Side Friction Factor and Minimum Radius for Horizontal Curves on Higher Volume Low-Speed Urban Streets ................................................................. 24
5. Guidelines for Maximum Side Friction Factor and Minimum Radius (New Construction, ADT < 250 veh/day, Limited Heavy Vehicle Traffic) ........................ 26
6. Guidelines for Maximum Side Friction Factor and Minimum Radius (New Construction, ADT from 250 to 400 veh/day, Limited Heavy Vehicle Traffic) .............. 27
7. Guidelines for Maximum Side Friction Factor and Minimum Radius (New Construction, ADT ≤ 400 veh/day, Substantial Proportions of Heavy Vehicle Traffic) ..... 28
8. Design Sight Distance Guidelines for New Construction of Very Low-Volume Local Roads .................................................................................................................... 34
9. Horizontal Curve Showing Sight Distance Along the Curve and the Middle Ordinate that Defines the Maximum Unobstructed Width .................................................................................................................... 35
10. Design Guidelines for Sight Distance on Horizontal Curves for New Construction of Very Low-Volume Local Roads .................................................................................................................... 36
11. Types of Vertical Curves ........................................................................................................................................................................... 37
12. Guidelines for Minimum Rate of Vertical Curvature to Provide Design Stopping Sight Distance on Crest Vertical Curves for New Construction of Very Low-Volume Local Roads .................................................................................................................... 39
13. Clear Sight Triangles for Intersection Approaches ........................................................................................................................................................................... 42
14. Recommended Sight Distance Guidelines for New Construction of Intersections with No Traffic Control (Case A) .................................................................................................................... 45
15. Recommended Sight Distance Guidelines for New Construction of Intersections with No Traffic Control (Case A) ......................................................... Error! Bookmark not defined.
17. Traction Coefficients Used in Design of Horizontal Alignment on Unpaved Roads .................................................................................................................... 522
Foreword

As highway designers, highway engineers strive to provide for the needs of highway users while maintaining the integrity of the environment. Unique combinations of design requirements that are often conflicting result in unique solutions to the design problems. The geometric design of very low-volume local roads presents a unique challenge because the very low traffic volumes and reduced frequency of crashes make designs normally applied on higher volume roads less cost effective. The guidance supplied by this text, Geometric Design Guidelines for Very Low-Volume Local Roads (ADT ≤ 400), addresses the unique needs of such roads and the geometric designs appropriate to meet those needs. These guidelines may be used in lieu of the guidance in A Policy on Geometric Design of Highways and Streets, also known as the Green Book. The guidance presented here will be incorporated in a future edition of that policy.

The guidelines for geometric design of very low-volume local roads are the result of a research and development process initiated by AASHTO in 1996. These guidelines were initially developed through two projects of the National Cooperative Highway Research Program (NCHRP), which is jointly sponsored by AASHTO and FHWA. After completion of the NCHRP research, these guidelines went through the normal AASHTO review process. During the development process, representatives of other interested organizations such as the National Association of County Engineers, the American Society of Civil Engineers, the U.S. Forest Service, the American Public Works Association, and the National League of Cities have participated in review of the guidelines.

Design values are presented in this document in both metric and U.S. customary units and were developed independently within each system. The relationship between the metric and U.S. customary values is neither an exact (soft) conversion nor a completely rationalized (hard) conversion. The metric values are those that would have been used had the policy been presented exclusively in metric units; the U.S. customary values are those that would have been used if the policy had been presented exclusively in U.S. customary units. Therefore, the user is advised to work entirely in one system and not attempt to convert directly between the two.

The fact that new design values are presented herein does not imply that existing streets and highways are unsafe, nor does it mandate the initiation of improvement projects. A Policy on Geometric Design of Highways and Streets states that specific site investigations and crash history analysis often indicate that the existing design features are performing in a satisfactory manner. The cost of full reconstruction for these facilities, particularly where major realignment is not needed, will often not be justified. This is especially true for very low-volume roads which experience substantially fewer crashes than higher volume roads. These guidelines recommend an approach to geometric design for very low-volume roads, including both new construction and projects on existing roads, that is based on research concerning the safety cost-effectiveness of geometric elements and on reviews of site-specific safety conditions.

These guidelines address issues for which appropriate geometric design guidance for very low-volume local roads differs from the policies normally applied to higher volume roads. For any geometric design issues not addressed by these guidelines, design professionals should consult A Policy on Geometric Design of Highways and Streets.
The intent of these guidelines is to assist the designer by referencing a recommended range of values for critical dimensions. It is not intended to be a detailed design manual that could supersede the need for the application of sound principles by the knowledgeable design professional. Flexibility in application of these guidelines is encouraged so that independent designs tailored to particular situations can be developed.

The highway, vehicle, and individual users are all integral parts of transportation safety and efficiency. While this document primarily addresses geometric design issues, a properly equipped and maintained vehicle and reasonable and prudent performance by the user are also necessary for safe and efficient operation of the transportation facility.
CHAPTER 1
INTRODUCTION

This document presents geometric design guidelines for very low-volume local roads. The purpose of the guidelines is to help highway designers in selecting appropriate geometric designs for roads with low traffic volumes traveled by motorists who are generally familiar with the roadway and its geometrics. The design guidelines presented here may be used on very low-volume local roads in lieu of the applicable policies for design of local roads and streets presented in AASHTO Policy on Geometric Design of Highways and Streets (1), commonly known as the Green Book.

This chapter defines very low-volume local roads, describes the scope of the design guidelines, explains the relationship of the guidelines to other AASHTO policies, and presents the organization of the remainder of this document.

DEFINITION OF VERY LOW-VOLUME LOCAL ROADS

The guidelines presented in this document are applicable to very low-volume local roads. Very low-volume local roads are defined as follows:

A very low-volume local road is a road that is functionally classified as a local road and has a design average daily traffic volume of 400 vehicles per day or less.

The preceding statement clarifies that the functional classification of a road is a key element of the definition of a very low-volume local road. A local road is a road whose primary function is to provide access to residences, farms, businesses, or other abutting property, rather than to serve through traffic. Although some through traffic may occasionally use a local road, through traffic service is not its primary purpose. The term local road is used here to refer to the functional classification of the road and is not intended to imply that the road is necessarily under the jurisdiction of a local or municipal unit of government. Administrative arrangements for operation of the highway system vary widely and, in different parts of the United States, roads that are functionally classified as local roads may be under Federal, state, or local control.

The guidelines presented in this document may also be applied in the design of roads that are functionally classified as collectors, so long as the road has a design average daily traffic volume of 400 vehicles per day or less and primarily serves drivers who are familiar with the roadway. There are roads in some states that, because of their length and position in the road network, are functionally classified as collectors, even though they serve very low volumes of primarily local or repeat drivers. Collector roads, by their nature, serve more through traffic than local roads; however, much of that through traffic consists of familiar drivers moving between local roads and arterials. The risk assessment on which the design guidelines are based is applicable to any roadway with design average daily traffic volume of 400 vehicles per day or less that serves primarily familiar drivers. Therefore, throughout the remainder of this document, when reference
is made to very low-volume local roads, it should be understood that the guidelines are also applicable to very low-volume collector roads that primarily serve familiar drivers.

Nearly 80 percent of the roads in the United States have traffic volumes of 400 vehicles per day or less. The very low-volume local and collector roads, defined above, to which the guidelines presented in this document are applicable, should include most of this extensive road mileage. In some states, portions of the state numbered route system meet the definition of very low-volume collector roads that serve familiar drivers and can be addressed with these guidelines.

**SCOPE OF GUIDELINES**

The guidelines presented in this document are intended for application in the design of very low-volume local roads, as defined above, including application in both new construction and in the improvement of existing roads. The scope of the guidelines includes roads in both rural and urban areas.

The design guidelines enable designers for projects on very low-volume local roads to apply design criteria that are less restrictive than those generally used on higher volume roads. The risk assessment on which the guidelines are based shows that these less restrictive design criteria can be applied on very low-volume local roads without compromising safety. The guidelines discourage widening of lanes and shoulders, changes in horizontal and vertical alignment, and roadside improvements except in situations where such improvements are likely to provide substantial safety benefits. Thus, projects designed in accordance with these guidelines are less likely to negatively impact the environment, roadway and roadside aesthetics, existing development, historic and archeological sites, and endangered species. In reviewing the geometric design for sections of existing roadway, designers should strive for consistency of design between that particular section and its adjoining roadway sections. The potential effects of future development that may affect the traffic volume and vehicle mix on the roadway should also be considered.

The design guidelines are intended to encourage rational safety management practices on very low-volume local roads. Expenditures for safety improvements are discouraged at sites where such improvements are likely to provide little safety benefit, but are strongly encouraged at sites where safety problems exist that can be corrected by a roadway or roadside improvement. Designers are provided substantial flexibility to retain the existing roadway and roadside design, where that existing design is performing well, but are also provided flexibility to recommend improved designs, even designs that exceed the guidelines presented here, where necessary to correct documented safety problems.

The scope of the guidelines includes geometric design for new construction and for improvement of existing roads. Geometric design criteria for new construction apply to construction of a new road where none existed before. Projects on existing roads may involve reconstruction, resurfacing, rehabilitation, restoration, and other types of improvements.