ASME/ANSI B1.8-1988
(REVISION OF ANSI B1.8-1977)

REAFFIRMED 2016

STUB ACME SCREW THREADS

AN AMERICAN NATIONAL STANDARD

The American Society of Mechanical Engineers
Intentionally left blank
AN AMERICAN NATIONAL STANDARD

STUB ACME SCREW THREADS

ASME/ANSI B1.8–1988
(REVISION OF ANSI B1.8–1977)

The American Society of Mechanical Engineers

345 East 47th Street, New York, N.Y. 10017
This Standard will be revised when the Society approves the issuance of a new edition. There will be no addenda or written interpretations of the requirements of this Standard issued to this edition.

This code or standard was developed under procedures accredited as meeting the criteria for American National Standards. The Consensus Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed code or standard was made available for public review and comment which provides an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large.

ASME does not "approve," "rate," or "endorse" any item, construction, proprietary device, or activity.

ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable Letters Patent, nor assume any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard.

ASME accepts responsibility for only those interpretations issued in accordance with governing ASME procedures and policies which preclude the issuance of interpretations by individual volunteers.

No part of this document may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Copyright © 1988 by
THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS
All Rights Reserved
Printed in U.S.A.
FOREWORD

(This Foreword is not part of ASME/ANSI B1.8-1988.)

The Standards Committee on the Standardization and Unification of Screw Threads, B1, was organized in June 1921 with the Society of Automotive Engineers and the American Society of Mechanical Engineers as joint sponsors under the procedures of the American Standards Association (ASA), now the American National Standards Institute (ANSI). This Committee was reorganized in May 1929, and its work was divided among five subcommittees as follows:

No. 1 — Scope and Arrangement of American Standard
No. 2 — Terminology and Form Threads, Except Gages
No. 3 — Special Threads and Twelve Pitch Series, Except Gages
No. 4 — Acme Threads, Except Gages
No. 5 — Screw Thread Gages

National standardization of Acme screw threads in the United States began in 1932 when Subcommittee No. 4 on Acme Threads of Sectional Committee B1 held its first meeting in New York. A report was presented on the types of Acme threads and the range of sizes and pitches in use in this country. It was prepared by C. W. Bettcher with the assistance of F. L. Woodcock. This report developed into a draft standard. When it was finally approved as an American Standard with the designation ASA B1.3-1941, it contained a section of introductory notes and tables covering general purpose screws and general purpose nuts, basic dimensions of general purpose Acme threads with special and standard pitches, basic dimensions of 29 deg. stub threads, measurements over three wires for Acme threads, basic dimensions of 60 deg. stub threads, and basic proportions for modified square threads.

In December 1942, to meet the war emergency, the National Aircraft Standards Committee of the Aeronautical Chamber of Commerce requested the ASA to consider establishing an American war standard for special Acme screw threads for use in aircraft construction. Recognizing the vital importance of aircraft production to the war effort, the ASA at once initiated this project and organized a special committee to develop the standard. At the London Conference on the unification of screw threads held in the summer of 1944, it was proposed that a war standard on Stub Acme threads also be drawn up. Early in March 1945, therefore, the work on this proposed standard was begun and a draft prepared as a result of the discussion with the British and Canadian experts at the Ottawa Conference in October 1945. This draft was dated March 1946 and was submitted to the ASA War Committee on Acme Threads and the ASA War Committee on Screw Threads in April 1946 for approval by letter ballot. However, a Stub Acme war standard was never issued.

In April 1946, the Subcommittees of Standards Committee B1 were reorganized to include the responsibility of the ASA War Committee. Subcommittee No. 2 on Acme and Stub Acme Threads revised the March 1946 draft on Stub Acme screw threads and on March 31, 1948, distributed the January 1948 draft to industry for criticism and comment.

The final draft of the proposed standard on Stub Acme screw threads was completed in June 1951 and was submitted to Sectional Committee B1 for letter ballot on September 17, 1951; it was approved with minor amendments. Following approval by the sponsor

iii
organizations, the proposed standard was submitted to the ASA for approval and designation as an American Standard. This was granted on May 7, 1952.

The next revisions were approved by ANSI as American National Standards on May 14, 1973, and May 11, 1977, respectively. Revisions were minor.

On September 2, 1981, the B1 Committee was reorganized as an ASME Standards Committee. The B1.8 Subcommittee developed this edition, which was subsequently approved by the ASME B1 Committee, submitted to ANSI, and adopted as an American National Standard on January 11, 1988.
ASME STANDARDS COMMITTEE B1
Standardization and Unification of Screw Threads

(The following is the roster of the Committee at the time of approval of this Standard.)

OFFICERS
D. J. Emanuell, Chairman
H. W. Ellison, Vice Chairman
C. E. Lynch, Secretary

COMMITTEE PERSONNEL

AEROSPACE INDUSTRIES ASSOCIATION OF AMERICA, INC.
G. G. Gerber, McDonnell Douglas Corp., St. Louis, Missouri
H. Bormann, Alternate, Sperry Defense Electronics, Great Neck, New York

AMERICAN MEASURING TOOL MANUFACTURERS ASSOCIATION
R. Dodge, Pennoyer-Dodge Co., Glendale, California
C. W. Jatho, Alternate, American Measuring Tool Manufacturers Association, Birmingham, Michigan

AMERICAN PIPE FITTINGS ASSOCIATION
W. C. Farrell, Jr., Stockham Valves and Fittings, Inc., Birmingham, Alabama

DEFENSE INDUSTRIAL SUPPLY CENTER
E. Schwartz, Defense Industrial Supply Center, Philadelphia, Pennsylvania
F. S. Ciccarone, Alternate, Defense Industrial Supply Center, Philadelphia, Pennsylvania

ENGINE MANUFACTURERS ASSOCIATION
G. A. Russ, Cummins Engine Co., Columbus, Indiana

INDUSTRIAL FASTENERS INSTITUTE
R. M. Harris, Bethlehem Steel Corp., Lebanon, Pennsylvania
K. E. McCullough, SPS Technologies, Inc., Newton, Pennsylvania
J. C. McMurray, Russel, Burdass & Ward Corp., Cleveland, Ohio
J. A. Trilling, Holo-Krome Co., West Hartford, Connecticut
C. J. Wilson, Industrial Fasteners Institute, Cleveland, Ohio

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY
W. C. Farrell, Jr., Stockham Valves and Fittings, Inc., Birmingham, Alabama

METAL CUTTING TOOL INSTITUTE (TAP & DIE DIVISION)
N. F. Nau, Union/Butterfield Division, Litton Industrial Products, Athol, Massachusetts
A. D. Shepherd, Jr., Alternate, Union/Butterfield Division, Litton Industrial Products, Derby Line, Vermont

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION
F. F. Weininger, Westinghouse Electric Corp., Pittsburgh, Pennsylvania
T. A. Farkas, Alternate, National Electrical Manufacturers Association, Washington, D.C.

NATIONAL FASTENER DISTRIBUTORS ASSOCIATION
J. F. Sullivan, Accurate Fasteners, Inc., Boston, Massachusetts
NATIONAL MACHINE TOOL BUILDERS ASSOCIATION
R. J. Sabatos, The Cleveland Twist Drill Co., Cleveland, Ohio
B. V. Shook, Teledyne Landis Machine Co., Waynesboro, Pennsylvania

NATIONAL SCREW MACHINE PRODUCTS ASSOCIATION
R. Zahniser, Alternate, National Screw Products Association, Brecksville, Ohio

SOCIETY OF AUTOMOTIVE ENGINEERS
H. W. Ellison, General Motors Corp., Warren, Michigan

SOCIETY OF MANUFACTURING ENGINEERS
D. M. Davidson, Lone Star Grinding Co., Southfield, Michigan
L. E. Gibson, Alternate, Lone Star Grinding Co., Houston, Texas

TUBULAR RIVET AND MACHINE INSTITUTE
R. M. Byrne, Trade Association Management Inc., Tarrytown, New York

U.S. DEPARTMENT OF THE ARMY
R. S. LaNier, U.S. Army Watervliet Arsenal, Watervliet, New York
M. E. Taylor, U.S. Army Armament, Munitions and Chemical Command, Dover, New Jersey
F. L. Jones, Alternate, U.S. Army Missile Command, Redstone Arsenal, Alabama

U.S. DEPARTMENT OF DEFENSE
E. Schwartz, Defense Industrial Supply Center, Philadelphia, Pennsylvania

U.S. DEPARTMENT OF THE NAVY
C. T. Gustafson, Metrology Laboratory, Portsmouth Naval Shipyard, Portsmouth, New Hampshire

INDIVIDUAL MEMBERS
J. E. Boehlein, PMC Industries, Wickliffe, Ohio
A. R. Broed, Lake-wood, Ohio
R. Browning, Southern Gage Co., Erin, Tennessee
A. Butovich, Air Industries Corp., Garden Grove, California
R. S. Chamerda, The Johnson Gage Co., Bloomfield, Connecticut
P. H. Drake, Hudson, Massachusetts
D. J. Emanuelli, Greenfield Tap & Die, Greenfield, Massachusetts
C. G. Erickson, Sterling Die Operation, West Hartford, Connecticut
J. O. Heize, Regal Beloit Corp., South Beloit, Illinois
S. I. Kanter, The Hanson-Whitney Co., Hartford, Connecticut
M. M. Schuster, Hi-Shear Corp., Torrance, California
R. E. Seppey, Alliel/Bendix Aerospace Corp., South Bend, Indiana
A. G. Strang, Boyds, Maryland
R. L. Tennis, Caterpillar Tractor Co., Peoria, Illinois
A. F. Thibodeau, Swanson Tool Manufacturing, Inc., West Hartford, Connecticut

PERSONNEL OF SUBCOMMITTEE NO. 8 — STUB ACME SCREW THREADS
D. Davidson, Chairman, Lone Star Grinding Co., Southfield, Michigan
A. G. Strang, Secretary, Boyds, Maryland
J. E. Boehlein, PMC Industries, Wickliffe, Ohio
R. Chamerda, The Johnson Gage Co., Bloomfield, Connecticut
D. J. Emanuelli, Greenfield Tap & Die, Greenfield, Massachusetts
G. A. Flannery, Mercury Gage Co., Detroit, Michigan
S. I. Kanter, The Hanson-Whitney Co., Hartford, Connecticut
P. Scherer, Pratt & Whitney Aircraft Division, East Hartford, Connecticut
CONTENTS

Foreword ... iii
Standards Committee Roster ... v

General and Historical ... 1
1 Specifications for Stub Acme Threads 1
2 Gages for Stub Acme Screw Threads 5

Figures
1 Stub Acme Form of Thread 2
2 Disposition of Allowances, Tolerances, and Crest Clearances
 for Stub Acme Threads ... 3

Tables
1 Tolerances on Major and Minor Diameters of External and
 Internal Threads ... 4
2 Stub Acme Screw Thread Form, Design Dimensions 8
3 Stub Acme Screw Threads, Standard Series, Basic Dimensions 9
4 Tolerances and Allowances for Major and Minor Diameters,
 Stub Acme Screw Threads, Standard Series 10
5 Pitch Diameter Allowances for Stub Acme Screw Threads 11
6 Pitch Diameter Tolerances for Stub Acme Screw Threads 12
7 Limiting Dimensions and Tolerances, Stub Acme Screw Threads,
 Standard Series .. 13
8 Plain Gage Tolerances ... 15
9 Tolerances for GO and NOT GO Thread Working and
 Setting Gages, Stub Acme Screw Threads 15
10 Pitch Diameter Compensation for Adjusted Lengths of
 GO Ring Gages .. 16

Appendices
A Alternative Stub Acme Threads, Modified Form 1 and
 Modified Form 2 ... 17
B Three-Wire Method of Measurement of Pitch Diameter of
 29 deg. Stub Acme Threads .. 21

Figures
A1 Modified Stub Acme Thread With Basic Height of 0.375p (Form 1) 18
A2 Modified Stub Acme Thread With Basic Height of 0.250p (Form 2) 18
B1 Basis of Lead Angle Correction for External Thread 28
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Modified Stub Acme Thread Form, Design Dimensions (Form 1)</td>
<td>19</td>
</tr>
<tr>
<td>A2</td>
<td>Modified Stub Acme Thread Form, Design Dimensions (Form 2)</td>
<td>20</td>
</tr>
<tr>
<td>B1</td>
<td>Wire Sizes and Constants, Single-Start Stub Acme Threads (29 deg.)</td>
<td>22</td>
</tr>
<tr>
<td>B2</td>
<td>Values for Wire Measurements of Single-Start Standard Stub Acme Threads (29 deg.)</td>
<td>23</td>
</tr>
<tr>
<td>B3</td>
<td>Values of $(1 + \text{cosec } \alpha')$ for $\alpha = 14$ deg. 30 min and Lead Angles From 0 deg. to 5 deg.</td>
<td>24</td>
</tr>
<tr>
<td>B4</td>
<td>Best-Wire Diameters and Constants for Large Lead Angles, 1 in. Axial Pitch Stub Acme Threads (29 deg.)</td>
<td>26</td>
</tr>
</tbody>
</table>
STUB ACME SCREW THREADS

GENERAL AND HISTORICAL

When formulated prior to 1895, regular Acme screw threads were intended to replace square threads and a variety of threads of other forms used chiefly for the purpose of producing traversing motions on machines, tools, etc. For current information on Acme threads, see the latest edition of ASME/ANSI B1.5.

The Stub Acme thread came into being early in the 1900s. Its use has been generally confined to those unusual applications where a coarse-pitch thread of shallow depth is required due to mechanical or metallurgical considerations.

Federal Government Use. When this Standard is approved by the Department of Defense and Federal Agencies and is incorporated into FED-STD H28/13, Screw Thread Standards for Federal Services, Section 13, the use of this Standard by the Federal Government is subject to all the requirements and limitations of FED-STD H28/13.

1 SPECIFICATIONS FOR STUB ACME THREADS

1.1 Angle of Thread

The included angle between the flanks of the thread measured in an axial plane shall be 29 deg. The line bisecting this 29 deg. angle shall be perpendicular to the axis of the screw thread.

1.2 Pitch of Thread

The pitch of a thread is the distance, measured parallel to its axis, between corresponding points on adjacent thread forms.

1.3 Height of Thread

The basic height of the standard Stub Acme thread shall be equal to 0.3 pitch. When design requirements necessitate use of a lesser or greater thread height, the data should be obtained from Appendix A.

1.4 Thickness of Thread

The basic thickness of the thread at a diameter smaller than the basic major diameter (i.e., the basic pitch diameter) by 0.3 pitch shall be equal to one-half the pitch.

1.5 Allowance (Minimum Clearance) at Major and Minor Diameters

A minimum diametral clearance is provided at the minor diameter of all Stub Acme thread assemblies by establishing the maximum minor diameter of external threads 0.020 in. below the basic minor diameter on threads 10 pitch and coarser, and 0.010 in. below the basic minor diameter for finer pitches. A minimum diametral clearance at the major diameter is obtained by establishing the minimum major diameter of the internal thread 0.020 in. above the basic major diameter for threads 10 pitch and coarser, and 0.010 in. above the basic major diameter for finer pitches.

1.6 Basic Thread Form Dimensions

The basic dimensions of the Stub Acme thread form for the most generally used pitches are given in Table 2. The basic thread form is symmetrical and is illustrated in Fig. 1.

1.7 Stub Acme Screw Thread Series

The series of diameters and associated pitches of Stub Acme threads listed in Table 3 are recommended as preferred. These diameters and pitches have been carefully selected to meet the present needs with the fewest number of items in order to reduce to a minimum the inventory of both tools and gages. If other combinations of diameter and pitch are required, calculate thread dimensions in accordance with the formulas in Fig. 2.