IEEE Recommended Practice for Electric Power Distribution for Industrial Plants

Abstract: A thorough analysis of basic electrical-systems considerations is presented. Guidance is provided in design, construction, and continuity of an overall system to achieve safety of life and preservation of property; reliability; simplicity of operation; voltage regulation in the utilization of equipment within the tolerance limits under all load conditions; care and maintenance; and flexibility to permit development and expansion. Recommendations are made regarding system planning; voltage considerations; surge voltage protection; system protective devices; fault calculations; grounding; power switching, transformation, and motor-control apparatus; instruments and meters; cable systems; busways; electrical energy conservation; and cost estimation.

Keywords: energy management, grounding, industrial power system, industrial power system economics, industrial power system planning, industrial power system protection, power cables, power distribution, power transformers, power system measurements, switches/switchgear, wiring
Grateful acknowledgment is made to the following organizations for having granted permission to reprint illustrations in this document as listed below:

Table 3-1 from ANSI C84.1-1989, American National Standard for Electric Power Systems and Equipment—Voltage Ratings (60 Hz), copyright 1989 by the American National Standards Institute.

Figure 3-7 from NEMA Standards Publication MG 1-1993, copyright held by the National Electrical Manufacturers Association.

Figure 5-4 from Basler Electric, Highland, IL.

Figure 5-5 from General Electric Company, Malvern, PA.

Figure 6-6 from the Industrial Power Systems Data Book, General Electric Company, Schenectady, NY.

IEEE Standards documents are developed within the Technical Committees of the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Board. Members of the committees serve voluntarily and without compensation. They are not necessarily members of the Institute. The standards developed within IEEE represent a consensus of the broad expertise on the subject within the Institute as well as those activities outside of IEEE that have expressed an interest in participating in the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of all concerned interests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason IEEE and the members of its technical committees are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA

IEEE Standards documents may involve the use of patented technology. Their approval by the Institute of Electrical and Electronics Engineers does not mean that using such technology for the purpose of conforming to such standards is authorized by the patent owner. It is the obligation of the user of such technology to obtain all necessary permissions.
This page intentionally left blank
Introduction

(This introduction is not part of IEEE Std 141-1993, IEEE Recommended Practice for Electric Power Distribution for Industrial Plants.)

Development of the IEEE Red Book has been an evolving process. With the publication of IEEE Std 141-1993, the Red Book has been in print for about fifty years. Work began on the seventh edition in 1987 with the participation of more than seventy electrical engineers from industrial plants, consulting firms, equipment manufacturers, and academe. It was sponsored and the final version approved by the Power Systems Design Subcommittee of the Power Systems Engineering Committee, Industrial and Commercial Power Systems Department, IEEE Industry Applications Society. The seventh edition was approved by the IEEE Standards Board in 1993 as an IEEE Recommended Practice. It provides pertinent information and recommended practices for the design, construction, operation, and maintenance of electric power systems in industrial plants.

The first publication was developed in 1945 by the Committee on Industrial Power Applications of the American Institute of Electrical Engineers (AIEE). It was entitled Electric Power Distribution for Industrial Plants and sold for $1.00 a copy. It became known by the nickname “Red Book” because of its red cover, and a precedent was established for the present IEEE Color Book series, which now encompasses ten books.

The second edition was published in 1956. The committee responsible for its preparation had become a subcommittee of the Industrial Power Systems Committee of the AIEE. This edition was identified as AIEE Number 952.

By 1964, the AIEE had become the Institute of Electrical and Electronics Engineers and the third edition was identified as IEEE No. 141. The fourth edition was produced in 1969, approved as an IEEE Recommended Practice, and identified as IEEE Std 141-1969. The fifth edition, published in 1976, was IEEE Std 141-1976, and the sixth edition, published in 1986, became an American National Standard as well as an IEEE Recommended Practice, and was identified as ANSI/IEEE Std 141-1986.

The authors of this 1993 edition wish to acknowledge their indebtedness to the several hundred engineers whose expertise and work culminated in the six previous editions. The present stature of the Red Book would not have been achieved without their efforts.
The Red Book Working Group for the 1993 edition had the following membership:

William J. Moylan, Chair

Lynn Saunders, Secretary

R. Gerald Irvine, Technical Support

Lucas G. Ananian, Advisory Counsel

Chapter 1: Overview—**Dan Goldberg**, Chair; Arthur Freund; R. Gerald Irvine; C. Grant Keough; Philip Nobile; Don Zipse

Chapter 2: Systems planning—**Lynn Saunders**, Chair; Robert Beaker; Carl Becker; B. L. Christen; Tom Diliberti; William Moylan; Don Pomering; Ronald Smith; Ray Stratford; S. I. Venugopalan; Don Zipse

Chapter 3: Voltage considerations—**Larry Conrad**, Co-Chair; **Gary Smullin**, Co-Chair; Carl Becker; Don Brereton; R. Gerald Irvine; S. I. Venugopalan

Chapter 4: Fault calculations—**Walter C. Huening**, Chair; Carl Becker; Richard Evans; Shan Griffith; Mark Leyton; Conrad St. Pierre

Chapter 5: Application and coordination of protective devices—**David Baker**, Chair; Jerry Baskin; Steve Goble; R. Gerald Irvine; William Moylan; Randall Schlake

Chapter 6: Surge voltage protection—**Wei-Jen Lee**, Chair; David Baker; Carl Becker; Gilbert Gaibrois; Shan Griffith; William Moylan; George Walsh

Chapter 7: Grounding—**Donald W. Zipse**, Chair; Robert Beaker; Kenneth Nicholson; Jerry Brown; Daleep Mohla; Charles Dennis; Milton Robinson; S. I. Venugopalan

Chapter 8: Power factor and related considerations—**William Moylan**, Chair; Carl Becker; James Harvey; Warren Lewis; Ray Stratford; George Walsh

Chapter 9: Harmonics in power systems—**Ray Stratford**, Chair; Larry Conrad; Dennis Darling; William Moylan

Chapter 10: Power switching, transformation, and motor control apparatus—**Sonny Sengupta**, Chair; Jerry Frank; Douglas Kanitz; R. Gerald Irvine; Harold Miles; William Moylan

Chapter 11: Instruments and meters—**Larry Conrad**, Chair; Valdis Basch; Harry Beckman; Dennis Darling; James Harvey; Yoshi Held

Chapter 12: Cable systems—**James Daly**, Chair; Robert Beaker; Gordon Bracey; Larry Kelly; Lynn Saunders

Chapter 13: Busways—**John Schuster**, Chair; Louis Capitina; Steven Flee; Robert Gustin; Robert Ingham; James Lewis; William Moylan; Lynn Saunders

Chapter 14: Electrical conservation through energy management—**Carl Becker**, Chair; Kao Chen; Joseph Eto; Dan Goldberg; R. Gerald Irvine; C. Grant Keough

Chapter 15: Industrial substations: Plant-utility interface considerations—**Tom Diliberti**, Co-Chair; **Ron Smith**, Co-Chair; Jerry Baskin; Carl Becker; C. W. Bierl; Larry Conrad; Joseph Dudor; Paul Gulik; Robert Hoerauf; Daleep Mohla; William Moylan; Lynn Saunders; Michael Stark; Don Zipse

Chapter 16: Cost estimating of industrial power systems—**Sonny Sengupta**, Co-Chair; **Charles Dennis**, Co-Chair; Robert Giese; Erling Hesla; Srimohan Jha; William Moylan; Malcolm Woodman; Don Zipse
At the time this document was balloted, the Power Systems Design Subcommittee had the following membership:

Stephen J. Schaffer, Chair

L. G. Ananian	S. Goble	H. C. Miles
R. J. Beaker	D. L. Goldberg	D. C. Mohla
J. H. Beall	A. P. Haggerty	W. J. Moylan
C. E. Becker	J. R. Harvey	J. R. Pfafflin
G. R. J. Bracey	L. F. Hogrebe	M. D. Robinson
D. S. Brereton	R. W. Ingham	V. Saporita
R. Castenschiold	R. G. Irvine	L. F. Saunders
L. E. Conrad	D. R. Kanitz	L. H. Smith, Jr.
J. M. Daly	S. C. Kapoor	G. T. Smullin
J. Eto	C. G. Keough	T. E. Sparling
R. A. Evans	T. S. Key	S. I. Venugopalan
L. F. Flagg	C. A. LaPlatney	W. N. Vernon
J. M. Frank	S. A. Larson	P. A. Zink
E. O. Galyon	M. Z. Lowenstein	D. W. Zipse

Others who contributed to the development of this document are as follows:
Bruce Bailey, Richard Doughty, William Kelly, Richard McFadden, Robert Simpson

Special recognition is given to Jeannette Pierce and Barbara Abitz for their contributions to the Red Book through coordination of balloting, document preparation, and liaison with chapter chairs.

The following persons were on the balloting committee:

Lucas Ananian	James R. Harvey	Michael Lowenstein
Robert J. Beaker	Robert G. Hoerauf	Daleep C. Mohla
James H. Beall	Robert W. Ingham	William J. Moylan
Carl E. Becker	R. Gerald Irvine	Milton D. Robinson
Rene Castenschiold	Ed Kalkstein	Vincent Saporita
James M. Daly	Douglas R. Kanitz	Lynn F. Saunders
Richard Evans	S. C. Kapoor	Stephen J. Schaffer
Jerry M. Frank	C. Grant Keough	Lester H. Smith
Edgar O. Galyon	Thomas S. Key	Thomas E. Sparling
Steven Goble	Steven A. Larson	S. I. Venugopalan
Daniel L. Goldberg	Wei-Jen Lee	Philip A. Zinck
Patrick A. Haggerty		Donald W. Zipse
When the IEEE Standards Board approved this standard on December 2, 1993, it had the following membership:

Wallace S. Read, Chair
Donald C. Loughry, Vice Chair
Andrew G. Salem, Secretary

Gilles A. Baril
José A. Berrios de la Paz
Clyde R. Camp
Donald C. Fleckenstein
Jay Forster*
David F. Franklin
Ramiro Garcia
Donald N. Heirman

Jim Isaak
Ben C. Johnson
Walter J. Karplus
Lorraine C. Kevra
E. G. “Al” Kiener
Ivor N. Knight
Joseph L. Koepfinger*
D. N. “Jim” Logothetis

Don T. Michael*
Marco W. Migliaro
L. John Rankine
Arthur K. Reilly
Ronald H. Reimer
Gary S. Robinson
Leonard L. Tripp
Donald W. Zipse

*Member Emeritus

Also included are the following nonvoting IEEE Standards Board liaisons:

Satish K. Aggarwal
James Beall
Richard B. Engelman
David E. Soffrin
Stanley I. Warshaw

Paula M. Kelty
IEEE Standards Project Editor
Acknowledgments

We gratefully acknowledge the contributions of time, talent, and expertise the following organizations have made toward the development of this Recommended Practice:

AT&T
BICC Cables Corporation
Brown & Root, Inc. and Associated Companies
Brown & Root, Braun
Carlsons Consulting Engineers, Inc.
Clarence P. Tsung & Associates
Cleveland Electric Illuminating Company
Cooper Industries, Bussmann Division
Detroit Edison
DuPont Company
Electrical Systems Analysis (ESA)
FMC Corporation
General Electric Company
Giese & Associates
Hoechst Celanese Corporation
ICF Kaiser Engineers, Inc.
Industra Inc., Engineers & Consultants
International Transformer Corporation
John Brown E & C
Middle Tennessee State University (MTSU)
Moylan Engineering Associates, Inc.
Oak Ridge National Laboratory, MMES
Power Technology Consultants, P.A.
Power Technologies, Inc.
Square D Company
Union Carbide
The University of Texas at Arlington
Westinghouse Electric Corporation
Wunderlich-Malec Engineering, Inc.
IEEE Recommended Practice for Electric Power Distribution for Industrial Plants

Chapter 1
Overview

1.1 Scope and general information

This publication provides a recommended practice for the electrical design of industrial facilities. It is likely to be of greatest value to the power-oriented engineer with limited industrial plant experience. It can also be an aid to all engineers responsible for the electrical design of industrial facilities. However, it is not intended as a replacement for the many excellent engineering texts and handbooks commonly in use, nor is it detailed enough to be a design manual. It should be considered a guide and general reference on electrical design for industrial plants and buildings.

Tables, charts, and other information that have been extracted from codes, standards, and other technical literature are included in this publication. Their inclusion is for illustrative purposes; where technical accuracy is important, the latest version of the referenced document should be consulted to assure use of complete, up-to-date, and accurate information.

It is important to establish, at the outset, the terms describing voltage classifications. Table 1-1, adapted from IEEE Std 100-1992 [B5], indicates these voltage levels. The National Electrical Code, described in 1.5.1, uses the term over 600 volts generally to refer to what is known as high voltage. Many IEEE Power Engineering Society (PES) standards use the term high voltage to refer to any voltage higher than 1000. All nominal voltages are expressed in terms of root-mean-square (rms). For a detailed explanation of voltage terms, see Chapter 3. ANSI C84.1-1977 [B1] lists voltage class designations applicable to industrial and commercial buildings where medium voltage extends from 1000 V to 69 kV nominal.

1.2 Industrial plants

The term industrial plants, as used in this chapter, refers to industrial plants, buildings, and complexes where manufacturing, industrial production, research, and development are performed. It does not include commercial buildings, such as institutional, governmental, public, health-related office buildings, nor apartment and residential buildings.

If commercial buildings are included in industrial complexes, then the use of IEEE Std 241-1990 (the Gray Book) would be appropriate for these specific buildings. If medical facilities

1The numbers in brackets preceded by the letter B correspond to those of the bibliography in 1.21.