Recommended Practices for the Design and Maintenance of Fluid Distribution Systems at Vehicle Maintenance Facilities
Other Reference Publications Available From PEI
Order Online at www.pei.org/shopping

- PEI/RP100, Recommended Practices for Installation of Underground Liquid Storage Systems
- PEI/RP200, Recommended Practices for Installation of Aboveground Storage Systems for Motor Vehicle Fueling
- PEI/RP300, Recommended Practices for Installation and Testing of Vapor Recovery Systems at Vehicle Fueling Sites
- PEI/RP400, Recommended Procedure for Testing Electrical Continuity of Fuel Dispensing Hanging Hardware
- PEI/RP500, Recommended Practices for Inspection and Maintenance of Motor Fuel Dispensing Equipment
- PEI/RP600, Recommended Practices for Overfill Prevention for Shop-Fabricated Aboveground Tanks
- PEI/RP800, Recommended Practices for Installation of Bulk Storage Plants
- PEI/RP900, Recommended Practices for the Inspection and Maintenance of UST Systems
- PEI/RP1000, Recommended Practices for the Installation of Marina Fueling Systems
- PEI/RP1100, Recommended Practices for the Storage and Dispensing of Diesel Exhaust Fluid (DEF)
- PEI/RP1200, Recommended Practices for the Testing and Verification of Spill, Overfill, Leak Detection and Secondary Containment Equipment at UST Facilities
- PEI/RP1400, Recommended Practices for the Design and Installation of Fueling Systems for Emergency Generators, Stationary Diesel Engines and Oil Burner Systems
- PEI/RP1700, Recommended Practices for the Closure of Underground Storage Tank and Shop-Fabricated Aboveground Storage Tank Systems
FOREWORD

These Recommended Practices for the Design and Maintenance of Fluid Distribution Systems at Vehicle Maintenance Facilities have been prepared as an industry service by the Petroleum Equipment Institute. The text represents the consensus views of the PEI Vehicle Maintenance Fluids Equipment Committee, comprised of the following members:

Phil Parker, Chairman
Blue1 Energy
Butler, Pennsylvania

Don Smith
Balcrank Corporation
Marietta, Georgia

Harrell “Doc” Blair
McKinney Petroleum Equipment
Mobile, Alabama

Alex Stuart
Beneficial Systems
Jetersville, Virginia

Perry Heaton
C.L. McBride Company, Inc.
New Albany, Indiana

Larry Webster
Alfred Benesch & Company
Glastonbury, Connecticut

The PEI Vehicle Maintenance Fluids Equipment Committee wishes to acknowledge the contributions to this publication by Bruce B. Doughty, formerly of Sytex West Inc.; Renee Miller, formerly of Graco; Stephen Spiros, formerly of Superior Equipment Company; and Charles Stookey of Reliable Hydraulics Inc.

Previously serving as consultant to the 2009 committee was Marcel Moreau, POE, Marcel Moreau Associates, 73 Bell Street, Portland, ME 04103.

All questions and other communications relating to this document should be sent only to PEI Headquarters, addressed to the attention of the PEI Vehicle Maintenance Fluids Equipment Committee.

Petroleum Equipment Institute
P.O. Box 2380
Tulsa, OK 74101-2380
(918) 494-9696
Fax: (918) 491-9895
E-mail: info@pei.org
WWW: www.pei.org

© 2020 Petroleum Equipment Institute
DISCLAIMER

Every effort has been made by the PEI Vehicle Maintenance Fluids Equipment Committee to ensure the accuracy and reliability of the information contained in this document. However, the Committee, its consultant and the Petroleum Equipment Institute make no representation, warranty or guarantee in connection with the publication of these recommended practices. The Institute hereby expressly disclaims any liability or responsibility for loss or damage resulting from the use of these recommended practices; for the violation of any federal, state or municipal regulation with which these practices may be in conflict; or for the infringement of any patent resulting from their use.
Contents

Foreword ..iii

Sections

1. Introduction ..1
 1.1 Origin ..1
 1.2 Background ..1
 1.3 Purpose ...1
 1.4 Scope ...1
 1.5 Sources ...2
 1.6 Use of Other PEI Recommended Practices ..2
 1.7 Importance of Competent Installers ..2

2. Definitions ...3
 2.1 Air Drop ...3
 2.2 Air Fuse ..3
 2.3 Air Header ..3
 2.4 Air Side ..3
 2.5 Authority Having Jurisdiction (AHJ) ...3
 2.6 Backpressure ..3
 2.7 Bleed Type Shutoff Valve ...3
 2.8 Bulkhead Fitting ...3
 2.9 Bung ..3
 2.10 Bung Adaptor ...3
 2.11 Bunghole ..3
 2.12 Cavitation ..3
 2.13 Check Valve ..3
 2.14 Classified Liquid ...3
 2.15 Control Handle ..3
 2.16 Cubic Foot per Minute (CFM) ...3
 2.17 Diaphragm Pump ..3
 2.18 Dispense Point ...3
 2.19 Double-Tapped Bushing ...4
 2.20 Drip Leg ...4
 2.21 Drum ...4
 2.22 Drum Cover ..4
 2.23 Duty Cycle ...4
 2.24 Elevator ..4
 2.25 Emergency Vent ..4
 2.26 Flash Point ..4
 2.27 Flexible Tubing ...4
 2.28 Fluid ..4
 2.29 Fluid Side ..4
 2.30 Follower Plate ...4
 2.31 Free-Flow Pumping Rate ...4
 2.32 Hose ..4
 2.33 Hose Reel ...5
 2.34 Hydraulic Hammer ...5
 2.35 Inductor Plate ...5
 2.36 Isolation Valve ..5
 2.37 Keg ...5
 2.38 Liquid Side ..5
6. Documentation, Inspection, Maintenance and Training ... 27
 6.1 General .. 27
 6.2 Training .. 27
 6.3 Major Component Documentation .. 27
 6.4 Scheduled Inspections and Maintenance ... 27

Appendix A: Pipe and Tube Reference Tables .. 29

Appendix B: Lubricant System Design Calculations ... 36
 B.1 General .. 36
 B.2 Pressure Drop ... 36
 B.3 Pressure Drop Calculation Example .. 37
 B.3.1 Calculating Connection Hose Pressure Drop ... 38
 B.3.2 Calculating Fixed Tubing Pressure Drop ... 39
 B.3.3 Calculating Hose Reel and Dispense Point Pressure Drop ... 40
 B.3.4 Calculating Total Pressure Drop .. 40
 B.4 Determining Pump Performance Requirements .. 40
 B.4.1 Selecting an Appropriate Pump Performance Chart ... 41
 B.4.2 Determining Pump Cycle Rate ... 42
 B.4.3 Determining Input Air Pressure .. 42
 B.4.4 Determining Air Consumption Rate .. 42
 B.4.5 Evaluating Results .. 42
 B.4.6 Recalculating Data .. 43
 B.5 Factors to Consider in Designing an Efficient Fluid Distribution System 43

Appendix C: Calculating Pressure Drop Graphically .. 45
 C.1 Introduction ... 45
 C.2 Information Required to Use the Nomograph .. 45
 C.3 Directions to Use the Pressure Drop Nomograph .. 45
 C.3.1 Determining Pressure Drop Produced by Connection Hose ... 45
 C.3.2 Determining Pressure Drop Produced by Tubing ... 46
 C.3.3 Determining Pressure Drop Produced by Hose Reel Assembly 46

Appendix D: Publication Reference .. 49
1. INTRODUCTION

1.1 Origin. The Petroleum Equipment Institute (PEI) has produced this document as an industry service. The recommended practices described herein represent a synthesis of industry procedures and manufacturer recommendations relating to centralized fluid distribution systems typically installed at vehicle maintenance facilities. These practices are the consensus recommendations of the PEI Vehicle Maintenance Fluids Equipment Committee. This Committee is made up of representatives from equipment manufacturers and contracting companies specializing in the design, service and installation of lubrication equipment. In addition, the Committee has had the benefit of reasoned comments submitted by parties interested in vehicle maintenance facilities.

1.2 Background. Well-designed and properly constructed centralized vehicle fluid distribution systems are commonly found at vehicle repair and fleet maintenance facilities. Although they are technically sophisticated, there is little published literature on the design of these systems. Because most of the fluids involved do not pose substantial fire or health hazards, there are few regulations regarding these systems. The absence of both industry guidance and regulatory standards has led to the installation of many such systems by people who are unfamiliar with the high air and fluid pressures present in these systems and the flow characteristics of lubrication fluids. Many factors make this uninformed approach to fluid distribution system design undesirable:

- Poorly designed systems may be inconvenient or inefficient to use and may require frequent servicing, repair or replacement.
- The high pressures used to convey viscous fluids can be dangerous.
- A lack of understanding of the relationships between fluid viscosity, pump pressure, and tubing length and diameter can result in the installation of distribution systems that have insufficient flow rates and inadequate performance.
- Improperly designed systems may create safety hazards posed by components operating at pressures well beyond their rated pressures.

The design of these fluid distribution systems is further complicated by the properties of the fluids themselves. Viscous fluid distribution systems must be properly designed in order to move these fluids efficiently through the distribution system. Proper design includes the use of specialized fittings, pumps and materials that can safely produce and contain the pressures required to move these fluids.

To perform effectively and efficiently, properly designed distribution and pumping systems must be able to safely and conveniently deliver ample flow rates at multiple distribution points. In addition, the rising cost of the products stored and distributed through these systems has placed increased emphasis on accurate inventory systems to track the usage of these fluids.

1.3 Purpose. The purpose of this document is to provide a concise summary of the design considerations and general guidelines for the proper installation of centralized fluid distribution systems for various types of vehicle-related fluids. This information has been assembled from published and unpublished sources provided by equipment manufacturers and experienced installers. The intent is to provide recommended practices to facility designers and installers that:

- promote construction of systems that operate safely and reliably;
- promote trouble-free performance of fluid distribution equipment; and
- provide the required flow rates over a broad range of end-user applications.

This document is NOT intended to:

- endorse or recommend particular materials, equipment, suppliers or manufacturers; or
- discourage the development and implementation of new procedures, equipment or devices.

1.4 Scope. These recommended practices apply to stationary, centralized fluid distribution systems for vehicle-related new and used fluids, such as:

- motor oil;
- gear oil;
- transmission fluid;
- hydraulic fluid;
- grease;
- antifreeze;
- windshield washer fluid.

The equipment covered includes supply containers (e.g., tanks, totes, drums, kegs, pails), piping and tubing, pumps, compressors, hoses, reels, control handles, and other equipment typically used to construct these systems.