Legal Notice for Standards

Canadian Standards Association (operating as “CSA Group”) develops standards through a consensus standards development process approved by the Standards Council of Canada. This process brings together volunteers representing varied viewpoints and interests to achieve consensus and develop a standard. Although CSA Group administers the process and establishes rules to promote fairness in achieving consensus, it does not independently test, evaluate, or verify the content of standards.

Disclaimer and exclusion of liability
This document is provided without any representations, warranties, or conditions of any kind, express or implied, including, without limitation, implied warranties or conditions concerning this document’s fitness for a particular purpose or use, its merchantability, or its non-infringement of any third party’s intellectual property rights. CSA Group does not warrant the accuracy, completeness, or currency of any of the information published in this document. CSA Group makes no representations or warranties regarding this document’s compliance with any applicable statute, rule, or regulation.

IN NO EVENT SHALL CSA GROUP, ITS VOLUNTEERS, MEMBERS, SUBSIDIARIES, OR AFFILIATED COMPANIES, OR THEIR EMPLOYEES, DIRECTORS, OR OFFICERS, BE LIABLE FOR ANY DIRECT, INDIRECT, OR INCIDENTAL DAMAGES, INJURY, LOSS, COSTS, OR EXPENSES, HOWEVER CAUSED, INCLUDING BUT NOT LIMITED TO SPECIAL OR CONSEQUENTIAL DAMAGES, LOST REVENUE, BUSINESS INTERRUPTION, LOST OR DAMAGED DATA, OR ANY OTHER COMMERCIAL OR ECONOMIC LOSS, WHETHER BASED IN CONTRACT, TORT (INCLUDING NEGLIGENCE), OR ANY OTHER THEORY OF LIABILITY, ARISING OUT OF OR RESULTING FROM ACCESS TO OR POSSESSION OR USE OF THIS DOCUMENT, EVEN IF CSA GROUP HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, INJURY, LOSS, COSTS, OR EXPENSES.

In publishing and making this document available, CSA Group is not undertaking to render professional or other services for or on behalf of any person or entity or to perform any duty owed by any person or entity to another person or entity. The information in this document is directed to those who have the appropriate degree of experience to use and apply its contents, and CSA Group accepts no responsibility whatsoever arising in any way from any and all use of or reliance on the information contained in this document.

CSA Group is a private not-for-profit company that publishes voluntary standards and related documents. CSA Group has no power, nor does it undertake, to enforce compliance with the contents of the standards or other documents it publishes.

Intellectual property rights and ownership
As between CSA Group and the users of this document (whether it be in printed or electronic form), CSA Group is the owner, or the authorized licensee, of all works contained herein that are protected by copyright, all trade-marks (except as otherwise noted to the contrary), and all inventions and trade secrets that may be contained in this document, whether or not such inventions and trade secrets are protected by patents and applications for patents. Without limitation, the unauthorized use, modification, copying, or disclosure of this document may violate laws that protect CSA Group’s and/or others’ intellectual property and may give rise to a right in CSA Group and/or others to seek legal redress for such use, modification, copying, or disclosure. To the extent permitted by licence or by law, CSA Group reserves all intellectual property rights in this document.

Patent rights
Attention is drawn to the possibility that some of the elements of this standard may be the subject of patent rights. CSA Group shall not be held responsible for identifying any or all such patent rights. Users of this standard are expressly advised that determination of the validity of any such patent rights is entirely their own responsibility.

Authorized use of this document
This document is being provided by CSA Group for informational and non-commercial use only. The user of this document is authorized to do only the following:

If this document is in electronic form:
• load this document onto a computer for the sole purpose of reviewing it;
• search and browse this document; and
• print this document if it is in PDF format.

Limited copies of this document in print or paper form may be distributed only to persons who are authorized by CSA Group to have such copies, and only if this Legal Notice appears on each such copy.

In addition, users may not and may not permit others to:
• alter this document in any way or remove this Legal Notice from the attached standard;
• sell this document without authorization from CSA Group; or
• make an electronic copy of this document.

If you do not agree with any of the terms and conditions contained in this Legal Notice, you may not load or use this document or make any copies of the contents hereof, and if you do make such copies, you are required to destroy them immediately. Use of this document constitutes your acceptance of the terms and conditions of this Legal Notice.
The 2019 edition of CSA S6, *Canadian Highway Bridge Design Code* contains many critical updates and major changes. To get you up to speed quickly, CSA Group has developed an online **Overview of Changes Course** that will provide you with an update on the significant changes contained in the 2019 edition and the impact of those changes on bridge design.

This four-hour, self-paced eLearning course covers the changes in the following eight sections of the Code:

- **Section 2** – Durability and Sustainability
- **Section 3** – Loads
- **Section 4** – Seismic Design
- **Section 5** – Methods of Analysis
- **Section 6** – Foundations and Geotechnical Systems
- **Section 7** – Buried Structures
- **Section 8** – Concrete Structures
- **Section 10** – Steel Structures

Training is Available in English or French

To purchase the **CSA S6:19 – Overview of Changes Course**, visit store.csagroup.org
Standards Update Service

CSA S6:19
November 2019

Title: Canadian Highway Bridge Design Code

To register for e-mail notification about any updates to this publication
• go to store.csagroup.org
• click on Product Updates

The List ID that you will need to register for updates to this publication is 2426158.

If you require assistance, please e-mail techsupport@csagroup.org or call 416-747-2233.

Visit CSA Group’s policy on privacy at www.csagroup.org/legal to find out how we protect your personal information.
Contents

Technical Committee on the Canadian Highway Bridge Design Code 30

Subcommittee on Section 1 — General 34

Subcommittee on Section 2 — Durability and Sustainability 35

Subcommittee on Section 3 — Loads 36

Subcommittee on Section 4 — Seismic design 37

Subcommittee on Section 5 — Methods of analysis 39

Subcommittee on Section 6 — Foundations and geotechnical systems 40

Subcommittee on Section 7 — Buried structures 42

Subcommittee on Section 8 — Concrete structures 44

Subcommittee on Section 9 — Wood structures 45

Subcommittee on Section 10 — Steel structures 47

Subcommittee on Section 11 — Joints and bearings 49

Subcommittee on Section 12 — Barriers and highway accessory supports 50

Subcommittee on Section 13 — Movable bridges 51

Subcommittee on Section 14 — Evaluation 53

Subcommittee on Section 15 — Rehabilitation and repair 54

Subcommittee on Section 16 — Fibre-reinforced structures 55

Subcommittee on Section 17 — Aluminum structures 57

Code Calibration Task Force 59

Fibre-Reinforced Concrete Task Force 60

French Translation Task Force 62

Regulatory Authority Committee 64

Preface 66

Foreword 71
Section 1 — General

1.1 Scope
1.1.1 Scope of Code
1.1.2 Scope of this Section
1.1.3 Terminology

1.2 Reference publications

1.3 Definitions
1.3.1 General
1.3.2 General administrative definitions
1.3.3 General technical definitions
1.3.4 Hydraulic definitions
1.4 General requirements
1.4.1 Approval
1.4.2 Design
1.4.3 Evaluation and rehabilitation of existing bridges
1.4.4 Construction

1.5 Geometry
1.5.1 Planning
1.5.2 Structure geometry

1.6 Barriers
1.6.1 Superstructure barriers
1.6.2 Roadside substructure barriers
1.6.3 Structure protection in waterways
1.6.4 Structure protection at railways

1.7 Auxiliary components
1.7.1 Expansion joints and bearings
1.7.2 Approach slabs
1.7.3 Utilities on bridges
1.8 Durability and maintenance
1.8.1 Durability and protection
1.8.2 Bridge deck drainage
1.8.3 Maintenance
1.9 Hydraulic design
1.9.1 Design criteria
1.9.2 Investigations
1.9.3 Location and alignment
1.9.4 Estimation of scour
1.9.5 Protection against scour
1.9.6 Backwater
1.9.7 Soffit elevation
1.9.8 Approach grade elevation
1.9.9 Channel erosion control
1.9.10 Stream stabilization works and realignment
1.9.11 Culverts

Section 2 — Durability and sustainability

2.1 Scope
2.2 Definitions
2.3 Design for durability
2.3.1 General 115
2.3.2 Environmental condition testing 115
2.3.3 Control of cracking in concrete elements 115
2.3.4 Design for service life 116
2.3.4.2 Non-replaceable components 116
2.3.4.3 Replaceable components 116
2.3.5 Materials 116
2.3.6 Structural details 117
2.4 Design for sustainability 119
2.5 Construction for durability and sustainability 120
2.6 Inspection, monitoring, and maintenance 120
2.6.1 Inspection 120
2.6.2 Monitoring 120
2.6.3 Maintenance 120
2.7 Rehabilitation 120
2.8 Climate and exposure considerations 120

Section 3 — Loads 122
3.1 Scope 122
3.2 Definitions 122
3.3 Abbreviations and symbols 124
3.3.1 Abbreviations 124
3.3.2 Symbols 125
3.4 Limit states criteria 129
3.4.1 General 129
3.4.2 Ultimate limit states 129
3.4.3 Fatigue limit state 129
3.4.4 Serviceability limit states 129
3.5 Load factors and load combinations 130
3.5.1 General 130
3.5.2 Permanent loads 132
3.5.3 Transitory loads 133
3.5.4 Exceptional loads 133
3.6 Dead loads 133
3.7 Earth loads and secondary prestress loads 134
3.7.1 Earth loads 134
3.7.2 Secondary prestress effects 134
3.8 Live loads 134
3.8.1 General 134
3.8.2 Design lanes 135
3.8.3 Traffic loads 135
3.8.4 Application 137
3.8.5 Centrifugal force 140
3.8.6 Braking force 140
3.8.7 Curb load 140
3.8.8 Barrier loads 140
3.8.9 Pedestrian load 141
3.8.10 Maintenance access loads 141
3.8.11 Maintenance vehicle load 141
3.8.12 Multiple-use structures 142
3.9 Superimposed deformations 142
3.9.1 General 142
3.9.2 Movements and load effects 143
3.9.3 Superstructure types 143
3.9.4 Temperature effects 143
3.10 Wind loads 145
3.10.1 General 145
3.10.2 Design of the superstructure 147
3.10.3 Design of the substructure 148
3.10.4 Aeroelastic instability 149
3.10.5 Wind tunnel tests 150
3.11 Water loads 150
3.11.1 General 150
3.11.2 Static pressure 150
3.11.3 Buoyancy 150
3.11.4 Stream pressure 150
3.11.5 Wave action 151
3.11.6 Scour action 151
3.11.7 Debris torrents 151
3.12 Ice loads 152
3.12.1 General 152
3.12.2 Dynamic ice forces 152
3.12.3 Static ice forces 155
3.12.4 Ice jams 155
3.12.5 Ice adhesion forces 155
3.12.6 Ice accretion 155
3.13 Earthquake effects 156
3.14 Vessel collisions 156
3.15 Vehicle collision load 156
3.16 Construction loads and loads on temporary structures 156
3.16.1 General 156
3.16.2 Dead loads 156
3.16.3 Live loads 156
3.16.4 Segmental construction 157
3.16.5 Falsework 157

Annex A3.1 (normative) — Climatic and environmental data 158

Annex A3.2 (normative) — Wind loads on highway accessory supports and slender structural elements 176

Annex A3.3 (normative) — Vessel collision 185

Annex A3.4 (normative) — CL-625-ONT live loading 195

Section 4 — Seismic design 196
4.1 Scope 196
4.2 Definitions 196
4.3 Abbreviation and symbols 199
4.3.1 Abbreviations 199
4.3.2 Symbols 199
4.4 Earthquake effects 204
4.4.1 General 204
4.4.2 Importance categories 204
4.4.3 Seismic hazard 204
4.4.4 Seismic performance category 210
4.4.5 Analysis and design approach 210
4.4.6 Performance-based design 213
4.4.7 Force-based design 217
4.4.8 Seismic force effects 219
4.4.9 Load factors and load combinations 219
4.4.10 Design forces and support lengths 219
4.5 Analysis 224
4.5.1 General 224
4.5.2 Single-span bridges 224
4.5.3 Multi-span bridges 224
4.6 Foundations 226
4.7 Concrete structures 226
4.7.1 General 226
4.7.2 Flexural resistances for design 226
4.7.3 Seismic performance category 1 227
4.7.4 Seismic performance category 2 227
4.7.5 Seismic performance category 3 227
4.7.6 Piles 230
4.8 Steel structures 232
4.8.1 General 232
4.8.2 Permitted materials 232
4.8.3 Sway stability effects 233
4.8.4 Steel substructures 233
4.8.5 Ductile diaphragms 238
4.8.6 Other systems 239
4.9 Joints and bearings 239
4.9.1 General 239
4.9.2 Seismic design forces 239
4.9.3 Displacements 239
4.10 Seismic base isolation and supplemental damping 239
4.10.1 General 239
4.10.2 Seismic hazard acceleration and displacement spectral values 240
4.10.3 Seismic performance category 240
4.10.4 Performance based design 240
4.10.5 Analysis procedures 241
4.10.6 Design displacements for seismic and other effects 244
4.10.7 Design forces and ductile detailing requirements for substructures 244
4.10.8 Other requirements 244
4.10.9 Required tests of isolation system 245
4.10.10 Elastomeric bearings used in isolation systems 249
4.10.11 Sliding bearings used in isolation systems 249
4.10.12 Supplemental dampers 250
4.10.13 Shock transmission units 252
4.11 Seismic evaluation of existing bridges 254
4.11.1 General 254
4.11.2 Bridge classification 254
4.11.3 Seismic hazard and evaluation 254
4.11.4 Performance criteria for performance-based design approach 254
4.11.5 Performance criteria for force-based design approach 255
4.11.6 Load factors and load combinations for seismic evaluation 255
4.11.7 Minimum support length 255
4.11.8 Member capacities 255
4.11.9 Required response modification factor for force-based design 256
4.11.10 Response modification factor of existing substructure elements 256
4.11.11 Evaluation acceptance criteria 256
4.11.12 Bridge access 257
4.11.13 Liquefaction of foundation soils 257
4.11.14 Soil-structure interaction 257
4.12 Seismic rehabilitation 257
4.12.1 Performance criteria 257
4.12.2 Response modification factor for force-based design approach 258
4.12.3 Seismic rehabilitation 258
4.12.4 Seismic rehabilitation techniques 259

Section 5 — Methods of analysis 260
5.1 Scope 260
5.2 Definitions 260
5.3 Abbreviations and symbols 262
5.3.1 Abbreviations 262
5.3.2 Symbols 262
5.4 General requirements 265
5.4.1 Application 265
5.4.2 Modelling requirements 265
5.4.3 Material properties 265
5.4.4 Traffic load application 266
5.4.5 Structural responses 266
5.4.6 Selection of a method of analysis 266
5.4.7 Construction sequence 267
5.4.8 Support conditions other than line support 267
5.4.9 Diaphragms and cross-frames 267
5.4.10 Horizontal and wind bracing 267
5.4.11 Traffic barriers 267
5.4.12 Effects of deformations 268
5.4.13 Stability effects 268
5.5 Requirements for specific bridge types 268
5.5.1 General 268
5.5.2 Slab bridges with tapered free edges 268
5.5.3 Voided slab 268
5.5.4 Deck-on-girder 268
5.5.5 Longitudinally connected beams 269
5.5.6 Truss and arch 269
5.5.7 Rigid frame and integral abutment types 270
5.5.8 Laminated wood decks spanning transversely 270
5.5.9 Multi-cell and multi-spine box girders 270
5.5.10 Single-cell box girder 270
5.6 Simplified method of analysis for longitudinal load effects 271
5.6.1 Applicability 271
5.6.2 Conditions for use for the analysis of dead and traffic loads 271
5.6.3 Analysis for dead load 272
5.6.4 General requirements for traffic load analysis 273
5.6.5 Traffic load analysis of slab and voided slab bridges 276
5.6.6 Traffic load analysis of slab-on-girder bridges 277
5.6.7 Traffic load analysis of girder bridges incorporating steel grid decks, aluminum decks, and wood decks 282
5.6.8 Traffic load analysis of multi-spine box girder bridges 285
5.6.9 Traffic load analysis of longitudinally connected box beam bridges 286
5.7 Analysis of decks 287
5.7.1 Load effects in deck slabs supported on longitudinal girders 287
5.7.2 Load effects in steel grid decks 292
5.7.3 Load effects in wood decks 292
5.7.4 Transverse vertical shear in longitudinally connected concrete box beam bridges 293
5.7.5 Analysis of floor systems in truss and arch bridges 295
5.7.6 Analysis of orthotropic steel decks 295
5.8 Effective flange widths for bending 295
5.8.1 Concrete slab-on-girders 295
5.8.2 Orthotropic steel decks 296
5.9 Refined methods of analysis for short- and medium-span bridges 297
5.9.1 General 297
5.9.2 Methods of analysis 297
5.9.3 Structural model 297
5.9.4 Requirements for specific bridge types 298
5.10 Long-span bridges 302
5.10.1 General 302
5.10.2 Cable-stayed bridges 302
5.10.3 Suspension bridges 302
5.11 Dynamic analysis 302
5.11.1 General requirements of structural analysis 302
5.11.2 Elastic dynamic responses 303
5.11.3 Inelastic-dynamic responses 303
5.11.4 Analysis for collision loads 304
5.11.5 Seismic analysis 304
5.12 Stability and magnification of force effects 304
5.12.1 General 304
5.12.2 Member stability analysis for magnification of member bending moments 304
5.12.3 Structural stability analysis for lateral sway 304
5.12.4 Structural stability analysis for assemblies of individual members 305

Annex A5.1 (normative) — Simplified methods of analysis for curved bridges 306
Annex A5.2 (normative) — Simplified analysis pony-truss bridges 310

Annex A5.3 (normative) — Simplified analysis of bridges for Class C and Class D highways 316

Annex A5.4 (informative) — Two-dimensional grillage analysis of steel, concrete, and aluminum superstructures 323

Annex A5.5 (informative) — Two-dimensional grillage analysis of wood superstructures 332

Annex A5.6 (informative) — Yield-line analysis of barrier walls due to vehicle impact 337

Section 6 — Foundations and geotechnical systems 340

6.1 Scope 340

6.2 Definitions 340

6.3 Symbols and abbreviations 344

6.3.1 Symbols 344

6.3.2 Abbreviations 348

6.4 Design requirements 349

6.4.1 Limit states 349

6.4.2 Effects on surroundings 350

6.4.3 Effects on supported structure 350

6.4.4 Structural components 350

6.4.5 Consultation 350

6.4.6 Quality assurance and quality control 350

6.5 Consequence and site understanding classification 351

6.5.1 Consequence classification 351

6.5.2 Consequence factor 351

6.5.3 Degree of site and prediction model understanding 351

6.5.4 Performance prediction models 352

6.6 Geotechnical engineering services 352

6.6.1 General 352

6.6.2 Site understanding and geotechnical investigation 352

6.6.3 Characteristic geotechnical parameters 352

6.7 Geotechnical report 353

6.7.1 General 353

6.7.2 Investigation information 353

6.7.3 Design information 353

6.8 Design liaison, contract documentation, and support during construction 354

6.9 Geotechnical resistance 354

6.9.1 General 354

6.9.2 Ultimate limit state 356

6.9.3 Serviceability limit state 357

6.10 Shallow foundations 358

6.10.1 General 358

6.10.2 Ultimate geotechnical bearing resistance 359

6.10.3 Serviceability geotechnical resistance 363

6.10.4 Ultimate geotechnical horizontal resistance 363

6.10.5 Structural geotechnical horizontal resistance 363

6.11 Deep foundations 366
<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.11.1</td>
<td>General</td>
<td>366</td>
</tr>
<tr>
<td>6.11.2</td>
<td>Individual pile behaviour</td>
<td>367</td>
</tr>
<tr>
<td>6.11.3</td>
<td>Pile group behaviour</td>
<td>369</td>
</tr>
<tr>
<td>6.11.4</td>
<td>System design and construction considerations</td>
<td>370</td>
</tr>
<tr>
<td>6.12</td>
<td>Ground pressures</td>
<td>372</td>
</tr>
<tr>
<td>6.12.1</td>
<td>General</td>
<td>372</td>
</tr>
<tr>
<td>6.12.2</td>
<td>Lateral ground pressure resistance</td>
<td>373</td>
</tr>
<tr>
<td>6.12.3</td>
<td>Compaction surcharge</td>
<td>373</td>
</tr>
<tr>
<td>6.12.4</td>
<td>Effects of loads</td>
<td>374</td>
</tr>
<tr>
<td>6.12.5</td>
<td>Surcharge</td>
<td>374</td>
</tr>
<tr>
<td>6.12.6</td>
<td>Wheel load distribution through fill</td>
<td>374</td>
</tr>
<tr>
<td>6.13</td>
<td>Integral and semi-integral abutments</td>
<td>375</td>
</tr>
<tr>
<td>6.13.1</td>
<td>Application</td>
<td>375</td>
</tr>
<tr>
<td>6.13.2</td>
<td>Geotechnical investigation</td>
<td>375</td>
</tr>
<tr>
<td>6.13.3</td>
<td>Design requirements</td>
<td>375</td>
</tr>
<tr>
<td>6.14</td>
<td>Seismic design</td>
<td>377</td>
</tr>
<tr>
<td>6.14.1</td>
<td>General</td>
<td>377</td>
</tr>
<tr>
<td>6.14.2</td>
<td>Seismic design and performance requirements</td>
<td>377</td>
</tr>
<tr>
<td>6.14.3</td>
<td>Geotechnical investigation</td>
<td>378</td>
</tr>
<tr>
<td>6.14.4</td>
<td>Geotechnical resistance factors and analysis</td>
<td>378</td>
</tr>
<tr>
<td>6.14.5</td>
<td>Shallow foundations</td>
<td>379</td>
</tr>
<tr>
<td>6.14.6</td>
<td>Deep foundations</td>
<td>380</td>
</tr>
<tr>
<td>6.14.7</td>
<td>Abutments and retaining walls</td>
<td>381</td>
</tr>
<tr>
<td>6.14.8</td>
<td>Liquefaction</td>
<td>382</td>
</tr>
<tr>
<td>6.14.9</td>
<td>Associated seismic hazards</td>
<td>384</td>
</tr>
<tr>
<td>6.15</td>
<td>Ground anchors</td>
<td>385</td>
</tr>
<tr>
<td>6.15.1</td>
<td>Application</td>
<td>385</td>
</tr>
<tr>
<td>6.15.2</td>
<td>Design</td>
<td>385</td>
</tr>
<tr>
<td>6.15.3</td>
<td>Materials and installation</td>
<td>386</td>
</tr>
<tr>
<td>6.15.4</td>
<td>Anchor testing</td>
<td>386</td>
</tr>
<tr>
<td>6.16</td>
<td>Sheet pile structures</td>
<td>387</td>
</tr>
<tr>
<td>6.16.1</td>
<td>Application</td>
<td>387</td>
</tr>
<tr>
<td>6.16.2</td>
<td>Design</td>
<td>387</td>
</tr>
<tr>
<td>6.16.3</td>
<td>Ties and anchors</td>
<td>387</td>
</tr>
<tr>
<td>6.16.4</td>
<td>Cellular sheet pile structures</td>
<td>387</td>
</tr>
<tr>
<td>6.17</td>
<td>Pole foundations</td>
<td>388</td>
</tr>
<tr>
<td>6.17.1</td>
<td>Application</td>
<td>388</td>
</tr>
<tr>
<td>6.17.2</td>
<td>Design</td>
<td>388</td>
</tr>
<tr>
<td>6.18</td>
<td>Permafrost design</td>
<td>388</td>
</tr>
<tr>
<td>6.18.1</td>
<td>General</td>
<td>388</td>
</tr>
<tr>
<td>6.18.2</td>
<td>Site screening and design for climate change</td>
<td>389</td>
</tr>
<tr>
<td>6.18.3</td>
<td>Foundation strategy</td>
<td>389</td>
</tr>
<tr>
<td>6.18.4</td>
<td>Qualifications</td>
<td>389</td>
</tr>
<tr>
<td>6.18.5</td>
<td>Effect on surroundings and sustainability</td>
<td>389</td>
</tr>
<tr>
<td>6.18.6</td>
<td>Altered permafrost conditions</td>
<td>389</td>
</tr>
<tr>
<td>6.18.7</td>
<td>Geotechnical site investigation in permafrost zones</td>
<td>390</td>
</tr>
<tr>
<td>6.18.8</td>
<td>Thermosyphons</td>
<td>391</td>
</tr>
<tr>
<td>6.19</td>
<td>Mechanically stabilized earth (MSE) wall systems</td>
<td>391</td>
</tr>
<tr>
<td>6.19.1</td>
<td>Application</td>
<td>391</td>
</tr>
</tbody>
</table>
6.19.2 Design 391
6.19.3 Structure dimensions 392
6.19.4 Reinforced soil material 394
6.19.5 Reinforcement elements 394
6.19.6 Loading, load factors, and resistance factors 395
6.19.7 Vertical and lateral displacements 395
6.19.8 Active lateral earth pressure coefficient 395
6.19.9 External stability 396
6.19.10 Internal stability 399
6.19.11 Seismic design of MSE walls 414
6.19.12 Drainage 414
6.19.13 Special loading conditions 414
6.19.14 MSE abutments 416
6.19.15 Other considerations 417

Section 7 — Buried structures 419
7.1 Scope 419
7.2 Definitions 419
7.3 Abbreviation and symbols 422
7.3.1 Abbreviation 422
7.3.2 Symbols 422
7.4 Hydraulic design 427
7.5 Design 427
7.5.1 Sustainability and durability 427
7.5.2 Limit states 428
7.5.3 Load factors 429
7.5.4 Material resistance factors 429
7.5.5 Refined methods of analysis for buried structures 430
7.5.6 Minimum height of cover 431
7.5.7 Geotechnical considerations 433
7.5.8 Seismic requirements 440
7.5.9 Minimum clear spacing between buried structures 441
7.5.10 Structures in cold regions 442
7.5.11 Transverse connections 442
7.5.12 End design 442
7.5.13 Handling, storage, transportation, and installation of precast concrete components 444
7.5.14 Site supervision and construction control 444
7.6 Soil-metal structures 444
7.6.1 General 444
7.6.2 Structural materials 446
7.6.3 Design criteria 446
7.6.4 Foundation material treatment for pipe-arches 451
7.6.5 Construction 452
7.6.6 Special features 454
7.6.7 Footing loads 454
7.7 Metal box structures 454
7.7.1 General 454
7.7.2 Structural materials 455
7.7.3 Design criteria 455
7.7.4 Additional design considerations 457
7.7.5 Construction 457
7.7.6 Special features 458
7.8 Reinforced concrete pipe, boxes, and three-sided buried structures 458
7.8.1 General 458
7.8.2 Standards for structural components 458
7.8.3 Standards for joint gaskets for precast concrete units 459
7.8.4 Installation criteria 459
7.8.5 Loads and load combinations 466
7.8.6 Earth pressure distribution from loads 467
7.8.7 Analysis 471
7.8.8 Ultimate limit state 471
7.8.9 Strength design 472
7.8.10 Serviceability limit state 475
7.8.11 Fatigue limit state 476
7.8.12 Minimum reinforcement 476
7.8.13 Distribution reinforcement 477
7.8.14 Details of the reinforcement 477
7.8.15 Joint shear for top slab of precast concrete box structures and other structures with flat top slabs and height of cover less than 600 mm 477
7.8.16 Construction 477
7.9 Reinforced concrete buried arches 481
7.9.1 General 481
7.9.2 Loading and analysis 481
7.9.3 Structural design 482
7.9.4 Construction 482

Section 8 — Concrete structures 484
8.1 Scope 484
8.2 Definitions 484
8.3 Symbols 487
8.4 Materials 495
8.4.1 Concrete 495
8.4.2 Reinforcing bars and deformed wire 499
8.4.3 Tendons 500
8.4.4 Anchorages, mechanical connections, and ducts 500
8.4.5 Grout 502
8.4.6 Material resistance factors 502
8.5 Limit states 503
8.5.1 General 503
8.5.2 Serviceability limit states 503
8.5.3 Fatigue limit state 503
8.5.4 Ultimate limit states 504
8.6 Design considerations 504
8.6.1 General 504
8.6.2 Design 505
8.6.3 Buckling 507
8.7 Prestressing 507
8.7.1 Stress limitations for tendons 507
8.7.2 Concrete strength at transfer 508
8.7.3 Grouting 508
8.7.4 Loss of prestress 508
8.8 Flexure and axial loads 511
8.8.1 General 511
8.8.2 Assumptions for the serviceability and fatigue limit states 511
8.8.3 Assumptions for the ultimate limit states 512
8.8.4 Flexural components 512
8.8.5 Compression components 513
8.8.6 Tension components 517
8.8.7 Bearing 517
8.9 Shear and torsion 517
8.9.1 General 517
8.9.2 Design procedures 518
8.9.3 Sectional design model 519
8.9.4 Slabs, walls, and footings 524
8.9.5 Interface shear transfer 525
8.10 Strut-and-tie model 526
8.10.1 General 526
8.10.2 Structural idealization 526
8.10.3 Proportioning of a compressive strut 526
8.10.4 Proportioning of a tension tie 528
8.10.5 Proportioning of node regions 528
8.10.6 Crack control reinforcement 528
8.11 Durability 529
8.11.1 Deterioration mechanisms 529
8.11.2 Protective measures 530
8.11.3 Detailing for durability 533
8.12 Control of cracking 533
8.12.1 General 533
8.12.2 Crack control reinforcement 534
8.12.3 Crack control reinforcement in zones of computed tensile stress 534
8.12.4 Proportioning and distribution of reinforcement in the side faces of beams 535
8.12.5 Proportioning and distribution of reinforcement near concrete surfaces exposed to daily temperature changes and near surfaces of mass concrete 535
8.13 Deformation 536
8.13.1 General 536
8.13.2 Dimensional changes 536
8.13.3 Deflections and rotations 536
8.14 Details of reinforcement and special detailing requirements 537
8.14.1 Hooks and bends 537
8.14.2 Spacing of reinforcement 538
8.14.3 Transverse reinforcement for flexural components 539
8.14.4 Transverse reinforcement for compression components 540
8.14.5 Reinforcement for shear and torsion 541
8.14.6 Maximum spacing of reinforcement for shear and torsion 541
8.14.7 Bundled bars 541
8.15 Development and splices 542
8.15.1 Development 542
8.15.2 Development of reinforcing bars and deformed wire in tension 543
8.15.3 Development of reinforcing bars in compression 544
8.15.4 Development of pretensioning strand 545
8.15.5 Development of bundled bars 545
8.15.6 Development of standard hooks in tension 545
8.15.7 Combination development length 546
8.15.8 Development of welded wire reinforcement in tension 546
8.15.9 Mechanical anchorages 547
8.15.10 Splicing of reinforcement 547
8.16 Anchorage zone reinforcement 549
8.16.1 General 549
8.16.2 Post-tensioning anchorage zones 549
8.16.3 Pretensioning anchorage zones 552
8.16.4 Inclined anchorages 553
8.16.5 Intermediate anchorages 553
8.16.6 Anchorage blisters 553
8.16.7 Anchorage of attachments 554
8.17 Seismic design and detailing 557
8.18 Special provisions for deck slabs 557
8.18.1 Applicability 557
8.18.2 General 558
8.18.3 Empirical design method 558
8.18.4 Diaphragms 563
8.18.5 Edge stiffening 563
8.18.6 Distribution reinforcement 563
8.19 Composite construction 565
8.19.1 General 565
8.19.2 Flexure 565
8.19.3 Shear 565
8.19.4 Semi-continuous structures 565
8.20 Concrete girders 566
8.20.1 General 566
8.20.2 Effective flange width for T- and box girders 566
8.20.3 Flange thickness for T- and box girders 566
8.20.4 Isolated girders 567
8.20.5 Top and bottom flange reinforcement for cast-in-place T- and box girders 567
8.20.6 Post-tensioning tendons 567
8.20.7 Diaphragms 567
8.21 Multi-beam decks 567
8.22 Segmental construction 568
8.22.1 General 568
8.22.2 Additional ducts and anchorages 568
8.22.3 Diaphragms 568
8.22.4 Deviators for external tendons 568
8.22.5 Coupling of post-tensioning tendons 569
8.22.6 Special provisions for various bridge types 569
8.22.7 Precast segmental beam bridges 571
8.23 Concrete piles 572
8.23.1 General 572
8.23.2 Specified concrete strength 572
8.23.3 Handling 572
8.23.4 Splices 572
8.23.5 Pile dimensions 572
8.23.6 Non-prestressed concrete piles 572
8.23.7 Prestressed concrete piles 573

Annex A8.1 (informative) — Fibre-reinforced concrete (FRC) 575

Section 9 — Wood structures 605
9.1 Scope 605
9.2 Definitions 605
9.3 Symbols 607
9.4 Limit states 610
9.4.1 General 610
9.4.2 Serviceability limit states 610
9.4.3 Ultimate limit states 610
9.4.4 Resistance factor 610
9.5 General design 611
9.5.1 Design assumption 611
9.5.2 Spans 611
9.5.3 Load-duration factor 611
9.5.4 Size-effect factors 611
9.5.5 Service condition 611
9.5.6 Load-sharing factor 613
9.5.7 Notched components 613
9.5.8 Butt joint stiffness factor 614
9.5.9 Treatment factor 614
9.6 Flexure 614
9.6.1 Flexural resistance 614
9.6.2 Size effect 615
9.6.3 Lateral stability 615
9.7 Shear 617
9.7.1 Shear resistance 617
9.7.2 Size effect 617
9.7.3 Shear force and shear load 617
9.7.4 Shear modulus 617
9.7.5 Vertically laminated decks 617
9.8 Compression members 617
9.8.1 General 617
9.8.2 Compressive resistance parallel to grain 618
9.8.3 Slenderness effect 618
9.8.4 Amplified moments 620
9.8.5 Rigorous evaluation of amplified moments 620
9.8.6 Approximate evaluation of amplified moments 622
9.9 Tension members 624
9.10 Compression at an angle to grain 625
9.11 Sawn wood 625
9.11.1 Materials 625
9.11.2 Specified strengths and moduli of elasticity 626
9.12 Glued-laminated timber 631
9.12.1 Materials 631
9.12.2 Specified strengths and moduli of elasticity 631
9.12.3 Vertically laminated beams 633
9.12.4 Camber 633
9.12.5 Varying depth 633
9.12.6 Curved members 633
9.13 Structural composite lumber 633
9.13.1 Materials 633
9.13.2 Specified strengths and moduli of elasticity 633
9.14 Wood piles 633
9.14.1 Materials 633
9.14.2 Splicing 633
9.14.3 Specified strengths and moduli of elasticity 633
9.14.4 Design 634
9.15 Connections 634
9.15.1 General 634
9.15.2 Design 635
9.15.3 Construction 635
9.16 Hardware and metalwork 635
9.17 Durability 635
9.17.1 General 635
9.17.2 Pedestrian contact 636
9.17.3 Incising 636
9.17.4 Fabrication 636
9.17.5 Pressure preservative treatment of laminated veneer lumber 636
9.17.6 Pressure preservative treatment of parallel strand lumber 636
9.17.7 Field treatment 637
9.17.8 Treated round wood piles 637
9.17.9 Untreated round wood piles 637
9.17.10 Pile heads 637
9.17.11 Protective treatment of hardware and metalwork 637
9.17.12 Stress-laminated timber decking 637
9.18 Wood cribs 638
9.18.1 General 638
9.18.2 Member sizes and assembly 638
9.18.3 Fastening 638
9.18.4 Load transfer to cribs 638
9.19 Wood trestles 638
9.19.1 General 638
9.19.2 Pile bents 638
9.19.3 Framed bents 639
9.19.4 Caps 639
9.19.5 Bracing 639
9.20 Stringers and girders 639
9.20.1 Design details 639
9.20.2 Diaphragms 639
9.21 Nail-laminated wood decks 640
9.21.1 General 640
9.21.2 Transversely laminated wood decks 640
9.21.3 Longitudinal nail-laminated wood decks 641
9.22 Wood-concrete composite decks 641
9.22.1 General 641
9.22.2 Wood base 641
9.22.3 Concrete slab 642
9.22.4 Wood-concrete interface 643
9.22.5 Factored moment resistance 645
9.23 Stress-laminated wood decks 646
9.23.1 General 646
9.23.2 Post-tensioning materials 646
9.23.3 Design of post-tensioning system 646
9.23.4 Design of distribution bulkhead 648
9.23.5 Laminated decks 650
9.23.6 Net section 651
9.23.7 Hardware durability 652
9.23.8 Design details 652
9.24 Glued-laminated decks 653
9.24.1 General 653
9.24.2 Materials 653
9.24.3 Interconnected decks 653
9.24.4 Non-interconnected decks 653
9.25 Wearing course 653
9.26 Drainage 653
9.26.1 General 653
9.26.2 Deck 654

Section 10 — Steel structures 655
10.1 Scope 655
10.2 Definitions 655
10.3 Abbreviations and symbols 657
10.3.1 Abbreviations 657
10.3.2 Symbols 657
10.4 Materials 667
10.4.1 General 667
10.4.2 Structural steel 667
10.4.3 Cast steel 667
10.4.4 Stainless steel 667
10.4.5 Bolts 668
10.4.6 Welding electrodes 668
10.4.7 Stud shear connectors 668
10.4.8 Cables 668
10.4.9 High-strength bars 668
10.4.10 Galvanizing and metallizing 668
10.4.11 Identification 668
10.4.12 Coefficient of thermal expansion 669
10.4.13 Pins and rollers 669
10.5 Design theory and assumptions 669
10.5.1 General 669
10.5.2 Ultimate limit states 669
10.5.3 Serviceability limit states 669
10.5.4 Fatigue limit state 670
10.5.5 Fracture control 670
10.5.6 Seismic requirements 670
10.5.7 Resistance factors 670
10.5.8 Analysis 670
10.5.9 Design lengths of members 670
10.6 Durability 671
10.6.1 General 671
10.6.2 Corrosion as a deterioration mechanism 671
10.6.3 Corrosion protection 671
10.6.4 Superstructure components 672
10.6.5 Other components 672
10.6.6 Areas inaccessible after erection 676
10.6.7 Detailing for durability 676
10.7 Design details 676
10.7.1 General 676
10.7.2 Minimum thickness of steel 676
10.7.3 Floor beams and diaphragms at piers and abutments 677
10.7.4 Camber 677
10.7.5 Welded attachments 678
10.8 Tension members 678
10.8.1 General 678
10.8.2 Axial tensile resistance 680
10.8.3 Axial tension and bending 681
10.8.4 Tensile resistance of cables 681
10.9 Compression members 681
10.9.1 General 681
10.9.2 Width-to-thickness ratio of elements in compression 682
10.9.3 Axial compressive resistance 685
10.9.4 Axial compression and bending 686
10.9.5 Composite columns 688
10.10 Beams and girders 691
10.10.1 General 691
10.10.2 Classes 1 and 2 sections 692
10.10.3 Class 3 sections 694
10.10.4 Stiffened plate girders 695
10.10.5 Shear resistance 695
10.10.6 Intermediate transverse stiffeners 697
10.10.7 Longitudinal web stiffeners 698
10.10.8 Bearing stiffeners 699
10.10.9 Lateral bracing, cross-frames, and diaphragms 700
10.11 Composite beams and girders 700
10.11.1 General 700
10.11.2 Proportioning 701
10.11.3 Effects of creep and shrinkage 701
10.11.4 Control of permanent deflections 701
10.11.5 Class 1 and Class 2 sections
10.11.6 Class 3 sections
10.11.7 Stiffened plate girders
10.11.8 Shear connectors
10.11.9 Lateral bracing, cross-frames, and diaphragms
10.12 Composite box girders
10.12.1 General
10.12.2 Effective width of tension flanges
10.12.3 Web plates
10.12.4 Flange-to-web welds
10.12.5 Moment resistance
10.12.6 Diaphragms, cross-frames, and lateral bracing
10.12.7 Multiple box girders
10.12.8 Single box girders
10.13 Horizontally curved girders
10.13.1 General
10.13.2 Special considerations
10.13.3 Design theory
10.13.4 Bearings
10.13.5 Diaphragms, cross-frames, and lateral bracing
10.13.6 Steel I-girders
10.13.7 Composite box girders
10.13.8 Camber
10.14 Trusses
10.14.1 General
10.14.2 Built-up members
10.14.3 Bracing
10.15 Arches
10.15.1 General
10.15.2 Width-to-thickness ratios
10.15.3 Longitudinal web stiffeners
10.15.4 Flange stability
10.15.5 Arch ties
10.16 Orthotropic decks
10.16.1 General
10.16.2 Serviceability limit states
10.16.3 Ultimate limit states
10.16.4 Fatigue limit states
10.17 Structural fatigue
10.17.1 General
10.17.2 Live-load-induced fatigue
10.17.3 Distortion-induced fatigue
10.18 Splices and connections
10.18.1 General
10.18.2 Bolted connections
10.18.3 Welds
10.19 Anchor rods
10.19.1 General
10.19.2 Bolted connections
10.19.3 Welds
10.19.4 Detailing of bolted connections
10.19.5 Connection reinforcement and stiffening
10.19.6 Anchor rods
10.20 General
10.20.1 General
10.20.2 Bolted connections
10.20.3 Welds
10.20.4 Detailing of bolted connections
10.20.5 Connection reinforcement and stiffening
10.20.6 Anchor rods
10.19.1 General 749
10.19.2 Anchor rod resistance 749
10.20 Pins, rollers, and rockers 750
10.20.1 Bearing resistance 750
10.20.2 Pins 750
10.21 Torsion 751
10.21.1 General 751
10.21.2 Members of closed cross-section 751
10.21.3 Members of open cross-section 752
10.22 Steel piles 753
10.22.1 General 753
10.22.2 Resistance factors 753
10.22.3 Compressive resistance 753
10.22.4 Unsupported length 754
10.22.5 Effective length factor 754
10.22.6 Splices 754
10.22.7 Welding 754
10.22.8 Composite tube piles 754
10.23 Fracture control 754
10.23.1 General 754
10.23.2 Identification 754
10.23.3 Materials 754
10.23.4 Fracture toughness 755
10.23.5 Welding of fracture-critical and primary tension members 759
10.23.6 Welding corrections and repairs to fracture-critical members 760
10.23.7 Radiographic inspection of fracture-critical members 762
10.23.8 Inspection records 763

Annex A10.1 (normative) — Construction requirements for structural steel 764

Annex A10.2 (normative) — Hybrid girders 781

Section 11 — Joints and bearings 784
11.1 Scope 784
11.2 Definitions 784
11.3 Abbreviations and symbols 785
11.3.1 Abbreviations 785
11.3.2 Symbols 785
11.4 Common requirements 787
11.4.1 General 787
11.4.2 Design requirements 788
11.5 Deck joints 788
11.5.1 General requirements 788
11.5.2 Selection 790
11.5.3 Design 791
11.5.4 Fabrication 792
11.5.5 Installation 792
11.5.6 Joint seals 792
11.5.7 Sealed joint drainage 792
11.5.8 Open joint drainage 792
11.5.9 Volume control joint 792
11.6 Bridge bearings 793
11.6.1 General 793
11.6.2 Metal back, roller, and spherical bearings 794
11.6.3 Sliding surfaces 795
11.6.4 Spherical bearings 800
11.6.5 Pot bearings 800
11.6.6 Elastomeric bearings 803
11.6.7 Disc bearings 809
11.6.8 Guides for lateral restraints 810
11.6.9 Load plates and attachment for bearings 811
11.6.10 Required tests for sliding interface 811
11.6.11 Required tests for laminated, spherical, pot, and disc bearings 816

Section 12 — Barriers and highway accessory supports 817
12.1 Scope 817
12.2 Definitions 817
12.3 Abbreviations and symbols 819
12.3.1 Abbreviations 819
12.3.2 Symbols 819
12.4 Barriers 820
12.4.1 General 820
12.4.2 Barrier joints 821
12.4.3 Traffic barriers 821
12.4.4 Pedestrian barriers 831
12.4.5 Bicycle barriers 833
12.4.6 Combination barriers 834
12.4.7 Noise barriers 834
12.5 Highway accessory supports 836
12.5.1 General 836
12.5.2 Vertical clearances 836
12.5.3 Maintenance 836
12.5.4 Aesthetics 836
12.5.5 Design 836
12.5.6 Breakaway supports 859
12.5.7 Foundations 860
12.5.8 Corrosion protection 861
12.5.9 Minimum thicknesses 861
12.5.10 Connections — Bolts 861
12.5.11 Damping devices 861

Section 13 — Movable bridges 863
13.1 Scope 863
13.2 Definitions 863
13.3 Abbreviations and symbols 869
13.3.1 Abbreviations 869
13.3.2 Symbols 869
13.4 Materials 872
13.4.1 General 872
13.4.2 Structural steel 872
13.4.3 Concrete 872
13.4.4 Timber 872
13.4.5 Carbon steel 872
13.4.6 Forged steel 872
13.4.7 Cast steel or iron 872
13.4.8 Bronze 872
13.4.9 Bolts 873
13.4.10 Aluminum 873
13.5 General 873
13.5.1 Safety 873
13.5.2 Type of deck 873
13.5.3 Piers and abutments 873
13.5.4 Navigation requirements 873
13.5.5 Vessel collision 873
13.5.6 Protection of traffic and pedestrians 873
13.5.7 Time of operation 874
13.5.8 Houses for machinery, electrical equipment, and operators 874
13.5.9 New devices 875
13.5.10 Interlocking 875
13.5.11 Position indicator 875
13.5.12 Inspection, evaluation, maintenance, and repair 875
13.6 Structural analysis and design 875
13.6.1 General 875
13.6.2 Access for routine maintenance 876
13.6.3 Durability 876
13.6.4 Wind loads 876
13.6.5 Seismic loads 877
13.6.6 Reaction due to temperature differential 878
13.6.7 Hydraulic cylinder connections 878
13.6.8 Loads on end floor beams and stringer brackets 878
13.6.9 Swing bridges — Ultimate limit states 878
13.6.10 Bascule (including rolling lift) bridges — Ultimate limit states 879
13.6.11 Vertical lift bridges — Ultimate limit states 880
13.6.12 Dead load factor 880
13.6.13 All movable bridges — Ultimate limit states 881
13.6.14 Special types of movable bridges 881
13.6.15 Load effects 881
13.6.16 Fatigue limit state 881
13.6.17 Friction 881
13.6.18 Machinery supports 881
13.6.19 Vertical lift bridge towers 881
13.6.20 Transitory loads 882
13.6.21 Counterweights 882
13.7 Mechanical system design 884
13.7.1 General 884
13.7.2 General design 884
13.7.3 Allowable stresses for machinery 884
13.7.4 Frictional resistance 891
13.7.5 Fits and tolerances 892
13.7.6 Surface finishes 894
13.7.7 Swing bridge components 894
13.7.8 Bascule bridge components 898
13.7.9 Rolling lift bridge components 900
13.7.10 Vertical lift bridge components 901
13.7.11 Bridge stops and buffers 904
13.7.12 Aligning and locking devices 905
13.7.13 Equalizing devices 905
13.7.14 Prime mover 906
13.7.15 Brakes 913
13.7.16 Shafting 919
13.7.17 Shaft keys and friction couplings 921
13.7.18 Bearings 923
13.7.19 Gearing 927
13.7.20 Wire ropes 931
13.7.21 Welded parts 939
13.7.22 Bolts and nuts 940
13.7.23 Set screws 941
13.7.24 Dust covers 941
13.7.25 Drain holes 941
13.7.26 Cams 942
13.7.27 Lubrication 942
13.8 Hydraulic systems 943
13.8.1 General 943
13.8.2 Design objectives 943
13.8.3 Hydraulic systems and components 943
13.8.4 Design loading criteria 944
13.8.5 Hydraulic system limit states 945
13.8.6 Hydraulic fluid 946
13.8.7 Electric motors 946
13.8.8 Internal combustion engines 947
13.8.9 Couplings 947
13.8.10 Pumps 947
13.8.11 Control valves 948
13.8.12 Accumulators 948
13.8.13 Fluid reservoirs 948
13.8.14 Hydraulic power unit accessories 949
13.8.15 Filters 949
13.8.16 Hydraulic motors 949
13.8.17 Pressure indicators 952
13.8.18 Controls 952
13.8.19 Hydraulic system detailing 954
13.8.20 Fabrication and construction 955
13.8.21 Materials — Hydraulic piping 956
13.9 Electrical system design 957
13.9.1 General 957
13.9.2 General requirements for electrical installations 957
13.9.3 Electrical supply and power service 958
13.9.4 Circuit breakers 958
13.9.5 Enclosures, junction boxes, and terminal cabinets 958
13.9.6 Fuses 958
13.9.7 Disconnect switches 959
13.9.8 Transformers 959
13.9.9 Medium voltage switchgears (600 V and above) 959
13.9.10 Transfer switches 959
13.9.11 Electrical control systems 960
13.9.12 Electric motors 968
13.9.13 Electric motor controls 970
13.9.14 Lights and signals 972
13.9.15 Grounding 973
13.9.16 Lightning and surge protection 974
13.9.17 Fire detection 975

Section 14 — Evaluation 976
14.1 Scope 976
14.2 Definitions 976
14.3 Symbols 976
14.4 General requirements 980
14.4.1 Exclusions 980
14.4.2 Expertise 980
14.4.3 Future growth of traffic or future deterioration 980
14.4.4 Scope of evaluation 980
14.5 Evaluation procedures 980
14.5.1 General 980
14.5.2 Limit states 981
14.5.3 Evaluation methodology 981
14.5.4 Bridge posting 982
14.6 Condition inspection 982
14.6.1 General 982
14.6.2 Plans 982
14.6.3 Physical features 982
14.6.4 Deterioration 982
14.7 Material strengths 982
14.7.1 General 982
14.7.2 Review of original construction documents 983
14.7.3 Analysis of tests of samples 983
14.7.4 Strengths based on date of construction 984
14.7.5 Deteriorated material 985
14.8 Permanent loads 985
14.8.1 General 985
14.8.2 Dead load 986
14.8.3 Earth pressure and hydrostatic pressure 986
14.8.4 Shrinkage, creep, differential settlement, and bearing friction 986
14.8.5 Secondary effects from prestressing 986
14.9 Transitory loads 986
14.9.1 Normal traffic 986
14.9.2 Permit — Vehicle loads 989
14.9.3 Dynamic load allowance for permit vehicle loads and alternative loading 991
14.9.4 Multiple-lane loading 991
14.9.5 Loads other than traffic 992
14.10 Exceptional loads 992
14.11 Lateral distribution categories for live load 993
14.11.1 General 993
14.11.2 Statically determinate method 993
14.11.3 Sophisticated method 993
14.11.4 Simplified method 993
14.12 Target reliability index 993
14.12.1 General 993
14.12.2 System behaviour 993
14.12.3 Element behaviour 994
14.12.4 Inspection level 994
14.12.5 Important structures 994
14.13 Load factors 995
14.13.1 General 995
14.13.2 Permanent loads 995
14.13.3 Transitory loads 996
14.14 Resistance 997
14.14.1 General 997
14.14.2 Resistance adjustment factor 1006
14.14.3 Effects of defects and deterioration 1006
14.15 Live load capacity factor 1007
14.15.1 General 1007
14.15.2 Ultimate limit states 1007
14.15.3 Serviceability limit states 1009
14.15.4 Combined load effects 1009
14.16 Load testing 1009
14.16.1 General 1009
14.16.2 Instrumentation 1009
14.16.3 Test load 1009
14.16.4 Application of load test results 1010
14.17 Bridge posting 1010
14.17.1 General 1010
14.17.2 Calculation of posting loads 1010
14.17.3 Posting signs 1012
14.18 Fatigue 1013

Annex A14.1 (normative) — Equivalent material strengths from tests of samples 1014

Annex A14.2 (normative) — Evaluation levels in Ontario 1016

Section 15 — Rehabilitation and repair 1019
15.1 Scope 1019
15.2 Definitions and symbols 1019
15.2.1 Definitions 1019
15.2.2 Symbols 1019
15.3 General requirements 1019
15.3.1 General 1019
15.3.2 Limit states 1019
15.3.3 Condition data 1020
15.3.4 Remaining service life and rehabilitation design life 1020
15.3.5 Inspection and maintenance 1020
15.3.6 Rehabilitation loads and load factors 1020
15.3.7 Analysis 1020
15.3.8 Factored resistances 1020
15.3.9 Fatigue and imposed deformations 1020
15.3.10 Bridge posting 1020
15.3.11 Seismic upgrading 1021
15.4 Particular considerations 1021
15.4.1 General 1021
15.4.2 Existing information 1021
15.4.3 Required remaining service life 1021
15.4.4 Capacity 1021
15.4.5 Environmental factors 1021
15.4.6 Stakeholder consultation 1022
15.4.7 Aesthetics 1022
15.4.8 Economics 1022
15.5 Rehabilitation loads and load factors 1022
15.5.1 Loads 1022
15.5.2 Load factors and load combinations 1024
15.6 Analysis 1025
15.7 Resistance 1025
15.7.1 Existing members 1025
15.7.2 Strengthening of existing members 1025
15.7.3 New members and connections 1026
15.8 Structural steel 1026
15.8.1 Member and connection repair and strengthening 1026
15.8.2 Member and connection replacement 1027
15.8.3 Welding effects and procedures 1027
15.8.4 Combining fasteners and welds 1027
15.8.5 Crevice corrosion and rust jacking 1028
15.8.6 Fatigue and fracture 1028

Section 16 — Fibre-reinforced structures 1029
16.1 Scope 1029
16.1.1 Components 1029
16.1.2 Fibres 1029
16.1.3 Matrices 1029
16.1.4 Uses requiring approval 1029
16.2 Definitions 1029
16.3 Abbreviations and symbols 1031
16.3.1 Abbreviations 1031
16.3.2 Symbols 1032
16.4 Durability 1036
16.4.1 General 1036
16.4.2 FRP tendons, primary reinforcement, and strengthening systems 1036
16.4.3 FRP secondary reinforcement 1037
16.4.4 Fibres in FRC 1037
16.4.5 Cover to reinforcement 1038
16.4.6 Protective measures 1038
16.4.7 Allowance for wear in deck slabs 1038
16.4.8 Detailing of concrete components for durability 1038
16.4.9 Handling, storage, and installation of fibre tendons and primary reinforcement 1038
16.5 Fibre-reinforced polymers 1038
16.5.1 FRP bars and grids 1038
16.5.2 FRP strengthening systems 1039
16.5.3 FRP tendons 1039
16.5.4 Material properties 1039
16.5.5 Confirmation of the specified tensile strength 1039
16.5.6 Resistance factor 1039
16.5.7 Minimum bend-radius-to-bar-diameter ratio of bent FRP bars 1040
16.6 Fibre-reinforced concrete 1040
16.6.1 General 1040
16.6.2 Fibre volume fraction 1040
16.6.3 Fibre dispersion in concrete 1041
16.7 Externally restrained deck slabs 1041
16.7.1 General 1041
16.7.2 Full-depth cast-in-place deck slabs 1042
16.7.3 Cast-in-place deck slabs on stay-in-place formwork 1043
16.7.4 Full-depth precast concrete deck slabs 1044
16.8 Concrete beams, slabs, and columns 1047
16.8.1 General 1047
16.8.2 Deformability and minimum reinforcement 1047
16.8.3 Non-prestressed reinforcement 1048
16.8.4 Development length for FRP bars and tendons 1048
16.8.5 Development of headed FRP bars and grids 1050
16.8.6 Tendons 1050
16.8.7 Design for shear and torsion 1051
16.8.8 Internally restrained cast-in-place deck slabs 1055
16.8.9 Compression components 1055
16.8.10 Cast-in-place deck slabs with FRP stay-in-place structural forms 1056
16.8.11 Strut-and-tie model for deep beams, corbels, and short walls 1057
16.9 Stressed wood decks 1059
16.9.1 General 1059
16.9.2 Post-tensioning materials 1059
16.9.3 Stressing procedure 1060
16.9.4 Design of bulkheads 1060
16.9.5 Stressed log bridges 1060
16.10 Barrier walls 1062
16.10.1 FRC barrier wall design details 1062
16.10.2 Barrier wall design details with front and back reinforcement 1062
16.10.3 Test Level 1, 2, 4, and 5 barrier wall design details 1062
16.10.4 Factored punching shear resistance of concrete barrier to transverse traffic 1063
16.11 Repair of damaged bridge barrier walls, curbs, and slabs reinforced with FRP bars 1064
16.12 Rehabilitation of existing concrete structures with FRP 1064
16.12.1 General 1064
16.12.2 Flexural and axial load rehabilitation 1065
16.12.3 Shear rehabilitation with externally bonded FRP systems 1068
16.12.4 Retrofit for enhancement of concrete confinement 1069
16.12.5 Retrofit for lap splice clamping 1071
16.13 Rehabilitation of timber bridges 1071
16.13.1 General 1071
16.13.2 Strengthening for flexure 1072
16.13.3 Strengthening for shear 1073

Annex A16.1 (informative) — Installation of FRP strengthening systems 1076

Annex A16.2 (normative) — Quality control for FRP strengthening systems 1079

Annex A16.3 (informative) — GFRP composite bridges 1081

Section 17 — Aluminum structures 1085
17.1 Scope 1085
17.2 Definitions 1085
17.3 Abbreviations and symbols 1087
17.3.1 Abbreviations 1087
17.3.2 Symbols 1088
17.4 Materials 1094
17.4.1 General 1094
17.4.2 Wrought products 1095
17.4.3 Castings 1096
17.4.4 Bolts 1096
17.4.5 Welding electrodes 1096
17.4.6 Stud shear connectors 1097
17.4.7 Identification 1097
17.5 Design theory and assumptions 1097
17.5.1 General 1097
17.5.2 Ultimate limit states 1097
17.5.3 Serviceability limit states 1097
17.5.4 Fatigue limit state 1098
17.5.5 Fracture control 1098
17.5.6 Seismic requirements 1098
17.5.7 Resistance factors 1098
17.5.8 Analysis 1098
17.5.9 Design lengths of members 1098
17.6 Durability 1099
17.6.1 General 1099
17.6.2 Deterioration mechanisms 1099
17.6.3 Corrosion protection 1099
17.6.4 Detailing for durability 1099
17.7 Design details 1100
17.7.1 General 1100
17.7.2 Minimum nominal thickness 1100
17.17.2 Built-up members 1136
17.17.3 Bracing 1136
17.18 Arches 1137
17.18.1 General 1137
17.18.2 Width-to-thickness ratios 1137
17.18.3 Longitudinal web stiffeners 1137
17.18.4 Axial compression and bending 1138
17.18.5 Arch ties 1138
17.19 Decks 1138
17.20 Structural fatigue 1140
17.20.1 General 1140
17.20.2 Live-load-induced fatigue 1140
17.20.3 Distortion-induced fatigue 1143
17.20.4 Local stress approaches 1151
17.20.5 Fatigue performance improving post-weld treatments 1151
17.20.6 Bridge decks 1152
17.21 Fracture control 1152
17.21.1 General 1152
17.21.2 Identification 1152
17.22 Splices and connections 1152
17.22.1 General 1152
17.22.2 Bolted connections 1153
17.22.3 Welded connections 1157
17.22.4 Gusset plate connections 1164
17.23 Anchors 1164
17.24 Pins, rollers, and rockers 1164
17.24.1 Bearing resistance 1164
17.24.2 Pins 1164
17.25 Construction requirements 1165
17.25.1 Submissions 1165
17.25.2 Materials 1166
17.25.3 Fabrication 1166
17.25.4 Welded construction 1169
17.25.5 Bolted construction 1169
17.25.6 Tolerances 1172
17.25.7 Quality control and welding inspection 1173
17.25.8 Transportation and delivery 1175
17.25.9 Erection 1175
17.26 Testing 1176
17.26.1 General 1176
17.26.2 Test methods 1177
17.26.3 Test procedures 1177
Preface

This Code is based on limit states design principles and defines design loadings, load combinations and load factors, criteria for earthquake resistant design, and detailed design criteria for the various materials. This Code has been written to be applicable in all provinces and territories.

There are 17 Sections in this Code:

Section 1 (“General”) specifies general requirements for applying the Code and includes definitions and a reference publications clause applicable throughout this Code. It also specifies geometric requirements, based in part on the Transportation Association of Canada’s Geometric Design Guide for Canadian Roads (2017), and hydraulic design requirements, based in part on the Transportation Association of Canada’s Guide to Bridge Hydraulics (2004). There are also general provisions covering durability, economics, environmental considerations, aesthetics, safety, maintenance, and maintenance inspection access. The definitions in Clauses 1.3.2 to 1.3.4 apply to those used specifically in this Section, and new to this edition of the Code, also apply to common definitions used in more than one Section in this Code.

Section 2 (“Durability and sustainability”) specifies requirements for durability and sustainability that need to be considered during the design process of bridges, culverts, and other structures located in transportation corridors. The durability requirements are based on principles applicable to service life design that consider the environmental exposure conditions, the deterioration mechanisms, the protective measures, and detailing requirements needed to meet the projected service life of structural components. The concept of sustainability considerations has been introduced to alert owners and designers to undertake design and decision-making practices that will help to achieve the context-specific balance of social, environmental, and economic values, and impacts associated with the investment in building new or rehabilitation of existing bridges and other transportation structures included in the scope of this Code. Similarly, local climate change and exposure conditions are brought to the attention of designers and owners.

Section 3 (“Loads”) specifies loading requirements for the design of new bridges, including requirements for permanent loads, live loads including special trucks, and special loads (but excluding seismic loads). The 625 kN truck load model and corresponding lane load model are specified as the minima for interprovincial transportation and are based on current Canadian legal loads. Ship collision provisions are also included. Section 3 does not specify limits on the span lengths for application of the truck and lane loads. Accordingly, long-span requirements have been developed and appear in Section 3 and elsewhere in this Code (these requirements, however, should not be considered comprehensive). Section 3 addresses wind tunnel testing for aerodynamic effects.

Section 4 (“Seismic design”) specifies seismic design requirements for new bridges and evaluation and rehabilitation requirements for existing bridges. In this edition of the Code, performance-based design (PBD) has been maintained using updated values for damage states in ductile substructures. Additional damage and service definitions have been provided. Minimum performance levels have been revised from three to two seismic hazard levels for all bridges requiring PBD. Force-based design (FBD) remains permitted for a refined set of special cases. Requirements for geotechnical and foundation design have been moved to Section 6. Some provisions for bearing design have been moved to Section 11 with
revisions in Section 4 for consistency. Capacity design has been clarified and encouraged for ductile structures using PBD and FBD. Design forces and material properties for PBD, FBD, and capacity design have been clarified. The shear capacity for ductile concrete columns has been revised upwards. Performance-based design and recommended minimum performance targets have been revised for the evaluation and rehabilitation of existing bridges. FBD approaches for existing bridges are discouraged, while guidance on displacement-based methods has been provided.

Section 5 ("Methods of analysis") specifies requirements for analyzing bridge superstructures. Additional guidance related to longitudinally connected beams and integral abutment bridges are provided. This Section presents new methods for the simplified analysis of longitudinally connected concrete box-beam bridges (previously named shear connected beams), curved steel girder bridges, and steel or aluminum pony-truss bridges. Reductions to limitations for when a curved bridge can be analyzed in the same manner as a straight bridge have been introduced. The robustness and accuracy of the simplified method has been verified by conducting thorough analysis using a large database of simply supported and continuous slab-on-girder bridges. This analysis resulted in shear forces being increased by up to 13% at interior supports for slab-on-girder bridges. In collaboration with Section 3, more specific requirements related to traffic loading are provided with the aim of clarifying the use of refined method of analysis. Revised requirements and guidance for the refined method of analysis have therefore been included. Methods for the design of deck slab cantilever overhang have been updated. Finally, a new simplified method of analysis is provided for determining the factored flexural resistance of steel-reinforced concrete barrier to transverse traffic barrier load.

Section 6 ("Foundations and geotechnical systems") adopted a risk-based approach to the design of foundations and geotechnical systems (including bridge approach embankments and retaining systems) in the 2014 edition of the Code. The risk-based design approach involves using a resistance factor, which captures our uncertainty in the ground and in our performance predictions, combined with a consequence factor, which adjusts target reliabilities depending on the severity of failure consequences (i.e., depending on the importance of the supported structure), to produce designs which properly account for the level of site understanding and failure consequences. This edition of the Code provides considerable additional changes, adding Code provisions in four design areas, three of which are entirely new to this Section, as follows:

- Clause 6.14, on seismic design, brings the geotechnical seismic design content originally in Section 4 into Section 6 and adds up-to-date content;
- Clause 6.10, on shallow foundations, has been brought up to date and its application is now much clearer;
- Clause 6.18, on permafrost design, provides new specifications for geotechnical design in cold climates; and
- Clause 6.19, on mechanically stabilized earth (MSE) wall systems, provides code requirements for MSE wall systems within the LRFD framework of Section 6 and addresses issues based on Canadian experience with these systems.

Section 7 ("Buried structures") deals with structures whose design and performance are heavily influenced by soil-structure interaction. The conduit wall of these buried structures can be fabricated from metal, steel or aluminum, or concrete. For metal structures, the conduit wall is made from corrugated plate which fits one of the three industry categories: shallow, deep, or deeper corrugated plate. For concrete structures the wall is reinforced concrete and can be precast or cast-in-place. Section 7 provides for a wide variety of structure shapes from low profile metal boxes or three-sided concrete boxes to large span metal or concrete arches. Section 7 specifies the use of refined methods of analysis for design although some simplified design equations can be used in smaller structures if specific geometric conditions are met. Section 7 also specifies requirements for determining the properties and
dimensions of the engineered soil and non-soil components and addresses construction requirements, geotechnical requirements, and foundation design requirements.

Section 8 ("Concrete structures") covers reinforced, fully prestressed, and partially prestressed concrete components, including deck slabs, made of normal-density, semi-low-density, and high-density concrete of a strength varying from 30 to 80 MPa. Compression field theory is used for proportioning for shear and for torsion combined with flexure. The strut-and-tie approach is used for proportioning regions where the plane sections assumption is not applicable. New to this edition is an informative Annex that provides design provisions for tension softening and tension hardening fibre-reinforced concrete, including ultra-high performance concrete. Other significant changes in this edition include revised provisions relating to the design of slender compression members, the control of cracking, and the use of debonded strands in pretensioned components.

Section 9 ("Wood structures") specifies properties for materials and fastenings that are consistent with CSA O86 Engineering Design in Wood. In this edition of the Code, provisions have been reconfigured, and specified strengths revised, to make the application of service condition factors, related to moisture content in members, transparent for the designer. Specified strengths and moduli of elasticity for spruce, lodgepole pine, Jack pine glued-laminated timber have been introduced. Preservative treatments related to durability have been updated to reflect current industry practices, and design values for structural composite lumber have been removed as such products are proprietary and design values can vary between manufacturers. Finally, glued-laminated decks have been introduced.

Section 10 ("Steel structures") specifies the requirements for the design of structural steel bridges and highway accessory supports, including requirements for structural steel components, such as tension and compression members, composite and non-composite straight and horizontally curved girders of I-shape or box shape and their connections. It also covers trusses and arch type bridges. The requirements for structural fatigue and fracture control are outlined in Clauses 10.17 and 10.23, respectively. The construction requirements for steel bridges are specified in Annex A10.1. Provisions for hybrid girders have been re-introduced into Section 10 as Annex A10.2.

Section 11 ("Joints and bearings") specifies the minimum requirements for the design of deck joints and bearings. The design of elastomeric bearings has been updated from previous editions to be consistent with approaches used in other North American and international standards and codes. Alternative sliding materials (as an alternative to PTFE) comprised of ultra-high molecular weight polyethylene are presented. A testing protocol for such materials is also presented.

Section 12 ("Barriers and highway accessory supports") specifies the requirements for the design of permanent bridge barriers and highway accessory supports. New provisions have been added in this edition of the Code to define the extent of the “zone of Intrusion” behind barriers and for the design of noise barriers. Also, new provisions have been added for designing highway accessory supports at the serviceability and fatigue limit states.

Section 13 ("Movable bridges") specifies requirements for the design, construction, and operation of conventional movable bridges, i.e., bascule, swing, and vertical lift. Although the structural design aspects are based on the limit states design approach, the mechanical systems design procedures follow the working stress principle used in North American industry. This Section provides special load combinations and load factors that are specific to movable bridges.

Section 14 ("Evaluation") includes provisions concerning the three-level evaluation system, evaluation of deck slabs, detailed evaluation from bridge testing, and load posting of bridges. An optional probability-based mean load method that uses site-specific load and resistance information for more accurate
evaluation is also provided. As in previous editions, an approach to determining material grades from small samples is provided.

Section 15 ("Rehabilitation and repair") specifies minimum design requirements for the rehabilitation of bridges, with particular emphasis on condition assessment, remaining service life, and rehabilitation design life. This Section also provides guidance on the selection of loads and load factors for rehabilitation that is based on the intended use of the bridge following rehabilitation. In this new edition of the Code, this Section introduces a new subsection on rehabilitation of structural steel elements to provide guidance on repair and strengthening of steel components and their connections.

Section 16 ("Fibre-reinforced structures") specifies design requirements for a number of structural components containing high-modulus fibre-reinforced polymers. The high-modulus fibres (aramid, carbon, and glass) are employed in fibre-reinforced polymers (FRPs), which are used for internal reinforcement as replacements for steel bars and tendons or as external reinforcement for retrofit. A new clause also briefly describes the use of the low-modulus fibres which are used for controlling cracks in concrete. This Section covers concrete beams, slabs, columns, concrete deck slabs, barrier walls, and stressed wood decks using FRP. Section 16 also includes design provisions for glass-fibre-reinforced polymers to be used as primary reinforcement and as tendons in concrete. An informative annex is now included to provide guidelines for GFRP composite bridges.

Section 17 ("Aluminum structures") specifies the requirements for the design, fabrication, and erection of aluminum highway bridges and pedestrian bridges. Where permitted in Section 12, Section 17 may now also be applied to highway accessory structures. In this edition of the Code, Clause 17.19 on aluminum bridge decks has been simplified and generalized recognizing that aluminum deck products may come in a broad variety of forms. Clause 17.20 on fatigue has been updated to add new local stress approaches, and a new Clause 17.26 on performance assessment by testing has been added.

CSA Group acknowledges that the development of this Code was made possible, in part, by the financial support of the governments of Alberta, British Columbia, Manitoba, New Brunswick, Newfoundland and Labrador, the Northwest Territories, Nova Scotia, Nunavut, Ontario, Prince Edward Island, Québec, Saskatchewan, and the Yukon, Public Works and Government Services Canada, the Federal Bridge Corporation Limited, and Les Ponts Jacques Cartier et Champlain Incorporée.

This Code was prepared by the Technical Committee on the Canadian Highway Bridge Design Code, under the jurisdiction of the Strategic Steering Committee on Construction and Civil Infrastructure, and has been formally approved by the Technical Committee.

Notes:
1) Use of the singular does not exclude the plural (and vice versa) when the sense allows.
2) Although the intended primary application of this Code is stated in its Scope, it is important to note that it remains the responsibility of the users of the Code to judge its suitability for their particular purpose.
3) This Code was developed by consensus, which is defined by CSA Policy governing standardization — Code of good practice for standardization as “substantial agreement. Consensus implies much more than a simple majority, but not necessarily unanimity”. It is consistent with this definition that a member may be included in the Technical Committee list and yet not be in full agreement with all clauses of this Code.
4) To submit a request for interpretation of this Code, please send the following information to inquiries@csagroup.org and include “Request for interpretation” in the subject line:
 a) define the problem, making reference to the specific clause, and, where appropriate, include an illustrative sketch;
 b) provide an explanation of circumstances surrounding the actual field condition; and
 c) where possible, phrase the request in such a way that a specific “yes” or “no” answer will address the issue.
Committee interpretations are processed in accordance with the CSA Directives and guidelines governing standardization and are available on the Current Standards Activities page at standardsactivities.csa.ca.

5) This Code is subject to review within five years from the date of publication. Suggestions for its improvement will be referred to the appropriate committee. To submit a proposal for change, please send the following information to inquiries@csagroup.org and include “Proposal for change” in the subject line:
 a) Standard designation (number);
 b) relevant clause, table, and/or figure number;
 c) wording of the proposed change; and
 d) rationale for the change.
Foreword

In Canada, the legal mandate for establishing design and construction requirements for highways, including highway bridges, lies with the provincial and territorial governments. All provinces and territories, with the exception of Manitoba, have mandated this Code for use under their jurisdictions.

Among the benefits associated with undertaking the development of this Code is the opportunity to establish safety and reliability levels for highway bridges that are consistent across Canada. Adoption of a single code makes it easier for the consulting and producer industries to respond to calls for proposals and eliminates the need for familiarity with the details of several codes. The adoption of a single code also supports the implementation of a national highway transportation system with agreed minimum standards and loadings for bridges on interprovincial highways, thereby encouraging consistency of vehicle weights across jurisdictions and supporting the objective of more cost-effective transportation of goods.

Designers need to be aware, however, that although this Code establishes CL-625 loading as the minimum for bridges that are part of the national highway system, it is within the mandate of the provinces and territories to adopt a heavier or lighter live loading based on local traffic conditions. For example, Ontario requires (as specified in Annex A3.4) the use of a CL-625-ONT loading in the design of new bridges; this reflects the higher average regulatory and observed loads for trucks operating in the province. All of the requirements of this Code applicable to CL-W loading also apply to CL-625-ONT loading. Designers should always obtain approval from the regulatory authority when a live loading other than the CL-625 loading is to be used for design, and should check whether any variations from the requirements of this Code are in effect in the jurisdiction, e.g., for evaluation of existing bridges or issuance of overload permits.

This Code was developed by taking into account the different regulatory structures and standards of Canada’s provinces and territories. Overall priorities and objectives were established by the Regulatory Authority Committee (RAC), which also monitored the progress of the Code’s development. In accordance with CSA procedural requirements, however, responsibility for the technical content of this Code was assigned to the Technical Committee (TC), as were decisions on how to deal with the priorities and objectives identified by the RAC. Because of the breadth and complexity of this Code, subcommittees (which were required to operate and report on a consensus basis) were established to oversee each section. In addition, task forces were established to handle specific aspects of this Code. The subcommittees and task forces reported to the TC through their Chairs. The extensive use of subcommittees permitted the recruitment of experts with the knowledge needed to address the sometimes highly specialized subjects covered by this Code.

This Code is complemented by CSA S6.1:19, Commentary on CSA S6:19, Canadian Highway Bridge Design Code, which provides rationale statements and explanatory material for many of the clauses of this Code.
Section 1
General

1.1 Scope

1.1.1 Scope of Code
This Code applies to the design, evaluation, and structural rehabilitation design of fixed and movable
highway bridges in Canada. There is no limit on span length, but this Code does not necessarily cover all
aspects of design for every type of long-span bridge. This Code also covers the design of pedestrian
bridges, bicycle bridges, retaining walls, barriers, and highway accessory supports of a structural nature,
e.g., lighting poles and sign support structures.

This Code does not apply to public utility structures or to bridges used solely for railway or rail transit
purposes.

This Code does not specify requirements related to coastal effects (e.g., exposure to sea action and
icebergs) or to mountainous terrain effects (e.g., avalanches). For structures that can be subject to such
effects, specialists need to be retained to review and advise on the design and to ensure that the
applicable requirements of other codes are met.

For bridges not entirely within the scope of this Code, the requirements of this Code apply only when
appropriate. Necessary additional or alternative design criteria are subject to the approval by the owner.

1.1.2 Scope of this Section
This Section specifies requirements for applying the Code and requirements of a general nature for
bridges, culverts, and related works. These requirements govern basic geometry and hydraulic design.
General requirements are also specified for subsidiary components, deck drainage, maintenance, and
inspection access. Broad guidelines related to economic, aesthetic, and environmental considerations
are also provided.

1.1.3 Terminology
In this Code, “shall” is used to express a requirement, i.e., a provision that the user is obliged to satisfy
in order to comply with the Code; “should” is used to express a recommendation or that which is
advised but not required; and “may” is used to express an option or that which is permissible within the
limits of the Code.

Notes accompanying clauses do not include requirements or alternative requirements; the purpose of a
note accompanying a clause is to separate from the text explanatory or informative material.

Notes to tables and figures are considered part of the table or figure and may be written as
requirements.

Annexes are designated normative (mandatory) or informative (non-mandatory) to define their
application.
Section 2
Durability and sustainability

2.1 Scope
This Section specifies requirements for durability and sustainability that shall be implemented during the design process in addition to this Code’s requirements for strength and serviceability. The requirements of this Section apply to the design of new bridges as well as to rehabilitation and replacement work.

2.2 Definitions
The following definitions shall apply in this Section. For common definitions used throughout the Code, refer to Clause 1.3.

Durability — the capability of a component, product, or structure to satisfy, with planned maintenance, the design performance requirements over a specific period of time under the influence of the environmental actions, or as a result of a self-ageing process.

Glass transition temperature — the midpoint of the temperature range over which an amorphous material changes from a brittle and vitreous state to a plastic state, or vice versa.

Inspection — conformity evaluation by observation and judgment accompanied as appropriate by measurement, testing, or gauging (ISO 9000).

Maintenance — a set of activities that are planned to take place during the service life of a structure, in order to fulfil the requirements for durability.

Major repair — activities performed to preserve or restore the function of a structure, that fall outside of the definition of planned or reasonably foreseen maintenance or rehabilitation.

Predicted service life — an estimated period of time for the service life of a component or system of components based on actual choice of materials, detailing, construction data, environmental characterization, or experience.

Qualified person — as a minimum, a person with sufficient experience and credentials as required by the owner based on the requirements of the projects. This should apply to site supervisors, contract administration and inspection staff, contractor’s supervisory staff, and anyone responsible for oversight during construction on behalf of the owner or contractor.

Quality assurance — as part of quality plan, a set of quality checking and verification procedures applied to confirm engineering design or construction of a structure completed in accordance with relevant codes and standards, and approved project criteria by the owner.

Quality plan — the document specifying which procedures and associated resources are to be applied by whom and when to meet the requirements of the specific project.

Remaining service life — the remaining period of time for which a structure or a component is to be used for its intended purpose with appropriate maintenance activities and planned rehabilitation, but without major repair. The assessment of the remaining service life of a structure or a component should
Section 3

Loads

3.1 Scope
This Section specifies loads, load factors, and load combinations to be used in calculating load effects for design. Resistance factors required to check ultimate limit states criteria in accordance with Clause 3.4.2 are specified elsewhere in this Code. Loadings provisions for evaluation of existing structures are covered in Section 14 and for rehabilitation in Section 15.

This Section includes requirements related to the vibration of highway and pedestrian bridges. It also includes requirements related to construction loads and temporary structures; these apply to partially completed structures and structures necessary for construction purposes. Snow loads are not specified because in normal circumstances the occurrence of a considerable snow load will cause a compensating reduction in traffic load.

3.2 Definitions
The following definitions shall apply in this Section. For common definitions used throughout the Code, refer to Clause 1.3.

Acceptance criterion — the acceptable frequency of collapse due to the design vessel collision.

Axle unit — any single-axle, tandem, or tridem.

Buffeting — the loads induced in a structure by the turbulence in the natural wind.

Critical or essential bridges — an operational classification for bridges that must continue to function after a vessel collision.

Damping — the dissipation of energy in a structure oscillating in one of its natural modes of vibration. It is normally expressed as a ratio of the actual value of damping to the critical value of damping. The critical value of damping is the lowest value at which an initial motion decays without oscillation.

Dead load — the load from material that is supported by the structure and is not subject to movement.

Debris torrent — a mass movement that involves water-charged inorganic and organic material flowing rapidly down a steep confined channel.

Design lane — a longitudinal strip that is a fraction of the deck width and within which a truck or Lane load is placed for the purpose of design or evaluation.

Divergence — an aerodynamic instability in torsion that usually occurs at wind speeds higher than those normally considered in design.

Drag — the load in the direction of the wind, induced by an airstream acting on a body.

Effective temperature — the temperature that governs the thermally induced expansion and contraction of a superstructure.
Section 4
Seismic design

4.1 Scope
This Section specifies minimum requirements for
a) the seismic analysis and design of new bridge structures; and
b) the seismic evaluation (Clause 4.11) and rehabilitation (Clause 4.12) of existing bridge structures.

4.2 Definitions
The following definitions shall apply to this Section of the Code. For common definitions used throughout the Code, refer to Clause 1.3.

Capacity design — a method of seismic design that allows the designer to prevent damage in certain components by making them strong enough to resist loads generated when adjacent components reach their probable resistance.

Capacity-protected element — a structural component that is being protected from damage by designing its capacity to be greater than the loads generated when adjacent ductile or force-limiting elements reach their probable resistance.

Concentrically braced frame with nominal ductility — a braced frame with concentric bracing designed and detailed to absorb limited amounts of energy through inelastic bending or extension of bracing members.

Connectors — mechanical devices, including bearing components and shear keys, that provide transverse or longitudinal restraint of movement of the superstructure relative to the substructure.
Note: Connectors do not include moment connections, monolithic joints, or longitudinal restrainers at expansion bearings (see Clause 4.4.10.4.2).

Damping — the dissipation of energy of a structure oscillating in one of its natural modes of vibration.
Note: It is normally expressed as a ratio of the actual value of damping to the critical value of damping. The critical value of damping is the minimum damping at which an initial motion decays without oscillation.

Design displacement — for bridges without isolation or supplemental damping, the displacement predicted from analysis.
Note: For the design of isolation or supplemental damping, see Clause 4.10.6.

Ductile concentrically braced frame — a braced frame with concentric bracing designed and detailed to absorb energy through yielding of the braces.

Ductile substructure element — an element of a substructure that is expected to undergo reversed-cyclic inelastic deformations without significant loss of strength and is detailed to develop the appropriate level of ductility while remaining stable.

Ductility — the ability of a structural member to deform without significant loss of load-carrying capacity after yielding.
Section 5

Methods of analysis

5.1 Scope
This Section specifies the methods of analysis for the design and evaluation of bridge superstructures.

5.2 Definitions
The following definitions shall apply in this Section. For common definitions used throughout the Code, refer to Clause 1.3.

Beam analogy method — a simplified method applicable to bridges satisfying the requirements of Clause 5.6.2 in which the bridge superstructure can be treated as a group of parallel beams equally distributed across the bridge width and on which the longitudinal load effects due to CL-W loading in longitudinal beams are determined using simple statics or prescribed distribution factors.

Bearing unit — a group of structural devices forming a line of support on a substructure unit (pier or abutment).

Bridge width — the distance between the unsupported edges along a line perpendicular to the centreline of the bridge.

Cantilever slab — in the transverse direction, the section of the deck slab that lies outside the centreline of the outermost girder or web; in the longitudinal direction, the section of the deck slab that lies outside the outermost lines of support.

Cross-frame — a transverse truss framework connecting adjacent longitudinal flexural components to provide stability to the compression flanges, sometimes synonymous with the term diaphragm.

Deck-on-girder bridge — a bridge superstructure made of longitudinal girders supporting a deck that is composite or not with the underlying girders.

Diaphragm — transverse structural element that spans between longitudinal main girders to provide lateral stability to these elements while adding to the transverse rigidity of the bridge and to distribute vertical and lateral loads.

Distortion — change of the cross-section shape in its own plane due to torsion.

Divergence — an aerodynamic instability in torsion that is analogous to column buckling and usually occurs at wind speeds beyond the range normally considered in the design.

Effective width — a reduced width of a flange or deck that enables a member to be proportioned on the basis of uniform stress.

Exterior portion of a slab bridge —
a) for a solid slab bridge, the outermost strip of the transverse cross-section on either side of the bridge equal to the slab depth but not less than 0.6 m nor more than 2.0 m; and
Section 6

Foundations and geotechnical systems

6.1 Scope
This Section specifies minimum requirements for the design of foundations and geotechnical systems (including highway embankments) under static loading conditions and for requirements pertaining to geotechnical investigations and design reports. This Section includes requirements for investigation to support seismic design, specifies minimum requirements to evaluate seismic resistance of foundations, and provides seismic performance requirements for geotechnical systems. This Section also includes requirements for investigation to support design of buried structures, although design of buried structures falls within the scope of Section 7.

Where conflict occurs between requirements in references to other Standards or Codes and Section 6, the requirements of Section 6 shall take precedence.

6.2 Definitions
The following definitions shall apply in this Section. For common definitions used throughout the Code, refer to Clause 1.3.

Abutments — the end foundations upon which the bridge superstructure rests.

False abutment — an abutment that consists of a wall where the bridge is actually supported on piles or columns behind the wall face.

Flexible abutment — an abutment supported on a single row of steel H-piles or steel tubular unfilled piles not exceeding 302 mm in diameter.

Integral abutment bridges — single or multispans continuous deck bridges with the superstructure integrally connected to flexible abutments. A cyclic joint is provided at the end of the approach slabs that are integrally connected to the deck.

Self-supporting abutment — an abutment not requiring lateral support from the deck for stability.

Semi-integral abutment bridges — single or multispans continuous deck bridges where the superstructure is supported on self-supporting abutments separated by bearings and as such is not integrally connected to the abutments. A cyclic joint is provided at the end of approach slabs that are integrally connected to the deck.

True abutment — an abutment that consists of a wall where the bridge is supported directly by the fill through a spread footing.

Active layer — the top layer of the ground above the permafrost that is subject to annual thawing and freezing in areas underlain by permafrost.

Active pressure — the lateral earth pressure exerted on a structure or geotechnical system, or both, when the system is able to move away from the backfill by an amount sufficient to fully mobilize the ground strength.
Section 7
Buried structures

7.1 Scope
This Section specifies requirements for the analysis and design of buried structures of the following types:
 a) soil-metal structures;
 b) metal box structures; and
 c) reinforced concrete structures.

This Section also specifies construction procedures, properties and dimensions of engineered fill components, and requirements for construction supervision.

7.2 Definitions
The following definitions shall apply in this Section. For common definitions used throughout the Code, refer to Clause 1.3.

Arch — a soil-metal or reinforced concrete structure in which the structure wall is not continuous around the perimeter of the bridged opening and the structure wall is supported on footings.

Arching — the transfer of pressure or load between the soil masses adjacent to and above a buried structure that move relative to one another. Positive arching results in the transfer of loads away from the buried structure; negative arching produces the opposite effect.

Aufeis — sheet-like mass of layered ice that forms from successive flows of groundwater during freezing temperatures.

Backfill — the fill around and above a buried structure or retained by a structure, including fill approved for use as engineering fill.

Bedding — the prepared portion of engineered fill on which the base of a closed buried structure wall is placed.

Bevel — the termination of the wall of a buried structure, cut at a plane inclined to the horizontal.

Buried structure — a structure that has one or more buried structures and is designed by taking account of the interaction between the structure wall and engineered fill.

Camber — a deliberate adjustment required in the longitudinal profile of bedding to compensate for post-construction settlement along the longitudinal axis of the structure.

Closed buried structure — a structure with a continuous perimeter.

Cold region — those land masses characterized by sub-zero average annual temperatures.

Note: Examples include Yukon, the Northwest Territories, Nunavut, and the northern portions of many Canadian provinces.
Section 8
Concrete structures

8.1 Scope
This Section specifies requirements for the design of structural components that are made of precast or cast-in-place normal-density, low-density, or semi-low-density concrete and reinforced with prestressed or non-prestressed steel. The components covered by this Section can be prestressed with pretensioned steel, grouted post-tensioned steel, or both.

8.2 Definitions
The following definitions shall apply in this Section. For common definitions used throughout the Code, refer to Clause 1.3.

Adhesive anchor — an anchor inserted into a hole drilled in hardened concrete and held in place by epoxy resin or another adhesive.

Anchor — a bolt, stud, or reinforcing bar embedded in concrete.

Anchorage —
 a) in post-tensioning, a device used to anchor a tendon to a concrete member;
 b) in pretensioning, a device used to anchor a tendon until the concrete has reached a predetermined strength; and
 c) for reinforcing bars, a length of reinforcement, mechanical anchor, or hook, or a length of reinforcement combined with a mechanical anchor or a hook.

Anchorage blister — a protrusion in a web, flange, or flange-web junction for placement of tendon anchorage fittings.

Anchorage system — an anchor or assemblage of anchors.

At jacking — at the time of tensioning tendons.

Attachment — a structure external to concrete that transmits loads to an anchor.

At transfer — at the time immediately after transfer.

Bonded tendon — a tendon that is bonded to concrete directly or by grouting.

Cast-in-place anchor — an anchor that is in its final location at the time of placing of concrete.

Closure — a cast-in-place concrete segment used to complete a span in segmental construction.

Concrete cover — the least distance between the surface of reinforcing bars, strands, post-tensioning ducts, anchorages, or connections and the surface of concrete.

Creep — time-dependent deformation of concrete under sustained load.

Deep beam — a member with a span-to-depth ratio of less than 2.0, where for continuous spans an effective span is taken as the distance between points of contraflexure due to dead load.
Section 9

Wood structures

9.1 Scope
This Section applies to structural wood components and their connections.

9.2 Definitions
The following definitions shall apply in this Section. For common definitions used throughout the Code, refer to Clause 1.3.

Beam and stringer (grading term) — sawn wood with a smaller dimension of at least 114 mm and a larger dimension more than 51 mm greater than the smaller dimension, graded for use in bending with the load applied to the narrow face.

Bearing block — a short wood block with its grain parallel to the applied post-tensioning force, used to distribute the forces in a stress-laminated wood bridge with an external post-tensioning system.

Butt joint — the discontinuities in a laminated wood deck where the ends of two laminates meet.

Crib — a configuration of horizontal members with alternating layers (usually perpendicular to one another) connected to form a closed box.

Dimension lumber — sawn wood 38 to 102 mm thick.

Direct bearing area — the area of outside lamination over which the post-tensioning is assumed to be applied.

Direct bearing pressure — the average pressure that is assumed to be applied to the direct bearing area by the post-tensioning force.

Distribution bulkhead — a steel section used to distribute the post-tensioning force.

Drift pin — a steel pin used to connect wood members.

Duration of load — a period of continuous application of a specified load or the summation of the time periods of intermittent applications of the same load.

External post-tensioning system — a system that transversely post-tensions a longitudinally laminated wood deck using two bars at each anchorage, one above and one below the deck.

Framed bent — a line of wood columns suitably braced.

Glued-laminated timber (Glulam) — structural wood that is manufactured in accordance with CAN/CSA-O122 and is produced by gluing together a number of laminates with essentially parallel grains.

Grade — the designation of the quality of a wood element.
Section 10
Steel structures

10.1 Scope
This Section specifies requirements for the design of structural steel bridges and highway accessory support structures, including requirements for structural steel components, welds, bolts, and other fasteners required in fabrication and erection. Requirements related to the repeated application of loads and to fracture control and fracture toughness for primary tension and fracture-critical members are also specified. Construction requirements for structural steel are also provided.

10.2 Definitions
The following definitions shall apply in this Section. For common definitions used throughout the Code, refer to Clause 1.3.

Brittle fracture — a type of fracture in structural materials without prior plastic deformation that usually occurs suddenly.

Buckling load — the load at which a member or element reaches a condition of instability.

Camber — the built-in deviation of a bridge member from straight, when viewed in elevation.

Class — a designation of structural sections with regard to the width-to-thickness ratios of their constituent elements and their flexural-compressive behaviour.

Coating — an owner-approved protective system for steel, e.g., galvanizing, metallizing, a paint system, or coal tar epoxy.

Composite beam or girder — a steel beam or girder structurally connected to a concrete slab so that the beam and slab respond to loads as a unit.

Composite column — a column consisting of a steel tube filled with concrete, with or without internal reinforcement.

Connection — a weld or arrangement of bolts that transfers normal and/or shear stresses from one element to another.

Critical net area — the area with the least tensile or tensile-shear resistance.

Erection diagrams — drawings that show the layout and dimensions of a steel structure and from which shop details are made. They also correlate the fabricator’s piece marks with locations on the structure.

Fatigue — initiation of microscopic cracks and propagation of such cracks into macroscopic cracks caused by the repeated application of load.

Fatigue limit — the level of stress range below which no fatigue crack growth is assumed to occur.

Firm contact — the condition that exists on a faying surface when plies are solidly seated against each other but not necessarily in continuous contact.
Section 11
Joints and bearings

11.1 Scope
This Section specifies minimum requirements for the design, selection, and detailing of joints and bearings.

11.2 Definitions
The following definitions shall apply in this Section. For common definitions used throughout the Code, refer to Clause 1.3.

Armour — an edging to the deck joint comprising a steel angle or a steel plate permanently attached to the concrete dam corners.

Bridging plate — a structurally integral cantilever plate, e.g., a finger plate, that is rigidly fastened to one side of a joint and permits free movement of the joint.

Concrete dam — the area adjacent to the joint that anchors the joint assembly or mechanism. It also provides protection against dynamic impact effects resulting from direct wheel traffic loading.

Cover plate — a plate that is not necessarily structurally integral with the joint but covers the joint to provide a safe riding surface.

Deck joint — a structural discontinuity between two elements, at least one of which is a deck element, that is designed to permit relative translation or rotation, or both, of abutting structural elements.

Note: Also called “expansion joint”.

Disc bearing — a bearing consisting of a restrained single moulded disc of unreinforced elastomer confined by upper and lower metal-bearing plates and prevented from moving horizontally by a shear-restricting mechanism.

Effective elastomer thickness — the sum of the thicknesses of all of the elastomeric layers in a bearing, excluding the outer layers.

Elastomer — a compound containing
a) virgin natural polyisoprene (natural rubber) (when used in pot bearings and plain or laminated elastomeric bearings);
b) polyether-urethane polymer (when used in disc bearings).

Elastomeric concrete — a viscous mixture of elastomer, chemical additives, and aggregates that, after being placed as an end expansion-joint dam and cured, retains the joint assembly while providing a resilient transition in the riding surface.

Fixed bearing — a bearing that prevents differential translation while permitting rotation of abutting structural elements.

Integral abutment bridge — a bridge whose superstructure and abutments are connected monolithically.
Section 12
Barriers and highway accessory supports

12.1 Scope
This Section specifies requirements for the design of permanent bridge barriers and highway accessory supports.

12.2 Definitions
The following definitions shall apply in this Section. For common definitions used throughout the Code, refer to Clause 1.3.

Anchorage — a bolt, stud, reinforcing bar, or assembly that is installed in concrete to anchor a structure or a component.

Barrier clearance — the clearance between the outside edge of the traffic lanes and the roadway face of a barrier.

Barrier exposure index — an index that reflects traffic volumes and bridge site characteristics and is used for determining barrier test levels.

Barrier joint — a discontinuity in a barrier that permits relative rotation or translation between barrier components on opposite sides of the discontinuity.

Bikeway — part of a highway designated for the movement of bicycles.

Breakaway support — a support designed to fail in such a way that, when struck by a vehicle, damage to the vehicle and injury to its occupants does not exceed a specified level.

Cantilevered support — a support that cantilevers out over a roadway.

Crash cushion — a barrier used for protecting vehicles from a roadside hazard and designed to fail in such a way that, when struck by a vehicle, damage to the vehicle and injury to its occupants does not exceed a specified level.

Crash test — a test of a barrier or highway accessory support carried out by crashing a vehicle into it and monitoring the vehicle-barrier or vehicle-highway accessory support interaction.

Design speed — the speed for which a highway at a bridge site is designed.

Double-nut anchor bolt anchorage — an anchorage consisting of a highway accessory support transverse base plate located above the top of the concrete foundation with the transverse base plate connected to the concrete foundation by anchor bolts having nuts both above and below the transverse base plate.

Highway accessory — a component required for the operation of a highway, e.g., a sign, luminaire, traffic signal, surveillance installation, noise barrier, or privacy barrier.

Highway accessory support — a structure (including supporting brackets, maintenance walkways, and mechanical devices, where present) that is designed to support highway accessories.
Section 13
Movable bridges

13.1 Scope
This Section specifies requirements for the design of conventional movable highway bridges, i.e., bascule (including rolling lift), swing, and vertical lift bridges and deals primarily with the components involved in the operation of such bridges. The requirements for fixed span bridges, as given in other sections of the Code, shall apply to movable bridges, except as otherwise provided.

13.2 Definitions
The following definitions shall apply in this Section. For common definitions used throughout the Code, refer to Clause 1.3.

Acceleration torque — torque produced by prime mover at any time between the initial start condition and full load speed.
Note: This is a variable as the torque value will vary with the speed.

Accumulator — an energy storage device for storing hydraulic fluid under pressure.
Note: The energy absorbing mechanism may be a spring, an external weight, or an inert gas with a precharge pressure.

Actual speeds — velocity at which machinery will move or rotate under the actual load or resistance, which is dependent upon the speed versus torque characteristics of the prime mover or the power-limiting settings of a hydraulic pump.

Addendum — the portion of gear tooth outside (greater than) the pitch radius.

Allowable static design stress — the permissible value of stress for calculations involving components subjected to static loading.

Average (mean) stress — one-half of the sum of the maximum and minimum stress.

Backlash — the smallest amount of space between the faces of mating gears.

Beta ratio — a measure of the effectiveness of filters.

Bevel gear — the type of gear that is commonly used when shafts intersect and that utilizes the concept of rolling cones.

Bridge closed or in closed position or in seated position or in fixed position — the bridge is in a position that permits highway traffic to use it.

Bridge open or in open position — the bridge is in a position that allows navigation to proceed.

Brittle —
a) materials designed against ultimate strength for which failure means fracture; or
b) easily broken, snapped, or cracked.

Section 14
Evaluation

14.1 Scope
This Section specifies methods of evaluating an existing bridge to determine whether it will carry a particular load or set of loads.

14.2 Definitions
The following definitions shall apply in this Section. For common definitions used throughout the Code, refer to Clause 1.3.

Capacity — the unfactored nominal resistance of an element or joint.
Evaluation — determination of a bridge’s capacity to carry traffic loads.

Evaluation Level 1 — evaluation of a bridge to determine its load-carrying capacity for vehicle trains (in normal traffic).

Evaluation Level 2 — evaluation of a bridge to determine its load-carrying capacity for two-unit vehicles (in normal traffic).

Evaluation Level 3 — evaluation of a bridge to determine its load-carrying capacity for single-unit vehicles (in normal traffic).

Evaluator — a qualified engineer responsible for evaluating a bridge.
Posting — signing of a bridge for load restrictions in accordance with regulations.
Single-unit vehicles — trucks, buses, cars, and other vehicles consisting of a single unit.
Two-unit vehicles — tractor–semi-trailers, car-trailers, truck-trailers, and other vehicles consisting of two units.

14.3 Symbols
The following symbols shall apply in this Section:

\(A \) = force effects due to additional loads (including wind, creep, shrinkage, temperature, and differential settlement) that may be considered in the evaluation

\(A_r \) = nominal area of a rivet, \(\text{mm}^2 \)

\(A_{st} \) = area of longitudinal tensile reinforcing steel in the bottom of concrete deck slabs, \(\text{mm}^2 \)

\(A_{st} \) = area of transverse tensile reinforcing steel in the bottom of concrete deck slabs, \(\text{mm}^2 \)

\(A_v \) = area of transverse shear reinforcement perpendicular to the axis of a member within a distance \(s \), \(\text{mm}^2 \)
Section 15
Rehabilitation and repair

15.1 Scope
This Section specifies minimum requirements for the rehabilitation of bridges but is not applicable to the resolution of construction deficiencies of new structures. The requirements specified in this Section relate only to condition assessment, loads, load factors, resistances, and other design criteria relevant to the rehabilitation of bridges, including required remaining service life and assessment of ongoing deterioration and its impact on structural integrity. Material specifications, rehabilitation procedures, and maintenance procedures are not covered in this Section.

15.2 Definitions and symbols

15.2.1 Definitions
The following definitions shall apply in this Section. For common definitions used throughout the Code, refer to Clause 1.3.

Fastener — a generic term for bolts, rivets, or other connecting devices, excluding welds.

15.2.2 Symbols
In addition to the symbols listed in this Clause, the symbols in Clause 14.3 shall apply in this Section.

\[V_{\text{friction}} = \text{plate friction resistance component (see Clause 15.8.4.1)} \]

\[V_{r,bolt} = \text{bolt shear resistance component (see Clause 15.8.4.1)} \]

\[V_{r,joint} = \text{factored shear resistance of a connection that includes both fasteners and welds in the same shear plane and loaded concentrically} \]

\[V_{r,\text{trans}} = \text{transverse weld resistance component (see Clause 15.8.4.1)} \]

\[V_{r,\text{long}} = \text{longitudinal weld resistance component (see Clause 15.8.4.1)} \]

15.3 General requirements

15.3.1 General
The requirements of Section 1 shall apply in addition to the content of this Section.

Note: See Clause 15.4 for particular considerations.

15.3.2 Limit states
Unless otherwise specified by the Owner or required by this Section, all rehabilitated members shall satisfy the ultimate limit state and serviceability limit state requirements specified as part of the design requirements of Sections 1 to 13 and 16 and 17, except that if the purpose of the rehabilitation is to allow passage of a controlled vehicle, the only load combination that shall be considered is permanent loads plus the control vehicle, with the load factors specified in Section 14.
Section 16
Fibre-reinforced structures

16.1 Scope

16.1.1 Components
The requirements of this Section apply to the following components containing fibre reinforcement:

a) fully or partially prestressed concrete beams and slabs;
b) non-prestressed concrete beams, slabs, columns, and deck slabs;
c) externally and internally restrained deck slabs;
d) stressed wood decks;
e) barrier walls;
f) existing concrete elements with externally bonded fibre-reinforced polymer (FRP) systems and near-surface-mounted reinforcement (NSMR); and
g) existing timber elements with externally or internally bonded glass-fibre-reinforced polymer systems (GFRP) and NSMR.

A non-mandatory Annex is also included on GFRP composite bridges (see Annex A16.3).

16.1.2 Fibres
This Section covers fibre reinforcement in which the fibre comprises one or more of the following:

a) glass;
b) carbon;
c) aramid;
d) a low modulus polymer or polymers; and
e) steel.

16.1.3 Matrices
This Section covers fibre-reinforced composites in which the matrix comprises one or more of the following:

a) epoxy resin;
b) saturated polyester resin;
c) unsaturated polyester resin;
d) vinylester resin;
e) polyurethane; and
f) Portland-cement-based mortar or concrete.

16.1.4 Uses requiring approval
Uses of fibre-reinforced polymers in structures or strengthening schemes that do not meet the requirements of this Section require approval by the owner.

16.2 Definitions
The following definitions shall apply in this Section. For common definitions used throughout the Code, refer to Clause 1.3.
Section 17
Aluminum structures

17.1 Scope
This Section specifies requirements for the design, fabrication, and erection of aluminum highway and pedestrian bridges. Where permitted in Section 12, the contents of this Section may also be applied to highway accessory structures.

17.2 Definitions
The following definitions shall apply in this Section. For common definitions used throughout the Code, refer to Clause 1.3.

Brittle fracture — a type of fracture in structural materials without prior plastic deformation that usually occurs suddenly.

Buckling load — the load at which a member or element reaches a condition of instability.

Buckling stress, \(F_c \) — the compressive stress that causes buckling.

Camber — the built-in deviation of a bridge member from straight, when viewed in elevation.

Characteristic resistance, \(R_k \) — the maximum force, moment, or torque that a component can be assumed to be capable of sustaining.

Coating — an owner-approved protective system for aluminum, e.g., galvanizing, metallizing, a paint system, or coal tar epoxy.

Composite beam or girder — an aluminum beam or girder structurally connected to a concrete slab so that the beam and slab respond to loads as a unit.

Critical net area — the net cross-sectional area with the least tensile or tensile-shear resistance.

Detail category — a category that establishes the level of stress range permitted in accordance with the classification of the detail and the number of design stress cycles.

Effective section — a section in which elements, because of welding or local buckling, are reduced to their effective thicknesses.

Effective strength, \(F_m \) — the reduced strength of an element, at the ultimate limit state, to account for the influence of local buckling or welding.

Elastic buckling stress, \(F_e \) — the theoretical stress that initiates elastic buckling.

Element — any flat or curved component of a section, such as the web of an I-beam.

Erection diagrams — drawings that show the layout and dimensions of an aluminum structure and from which shop details are made. They also correlate the fabricator’s piece marks with locations on the structure.