Concrete materials and methods of concrete construction/Test methods and standard practices for concrete
Legal Notice for Standards

Canadian Standards Association (operating as “CSA Group”) develops standards through a consensus standards development process approved by the Standards Council of Canada. This process brings together volunteers representing varied viewpoints and interests to achieve consensus and develop a standard. Although CSA Group administers the process and establishes rules to promote fairness in achieving consensus, it does not independently test, evaluate, or verify the content of standards.

Disclaimer and exclusion of liability
This document is provided without any representations, warranties, or conditions of any kind, express or implied, including, without limitation, implied warranties or conditions concerning this document’s fitness for a particular purpose or use, its merchantability, or its non-infringement of any third party’s intellectual property rights. CSA Group does not warrant the accuracy, completeness, or currency of any of the information published in this document. CSA Group makes no representations or warranties regarding this document’s compliance with any applicable statute, rule, or regulation.

IN NO EVENT SHALL CSA GROUP, ITS VOLUNTEERS, MEMBERS, SUBSIDIARIES, OR AFFILIATED COMPANIES, OR THEIR EMPLOYEES, DIRECTORS, OR OFFICERS, BE LIABLE FOR ANY DIRECT, INDIRECT, OR INCIDENTAL DAMAGES, INJURY, LOSS, COSTS, OR EXPENSES, HOWEVER CAUSED, INCLUDING BUT NOT LIMITED TO SPECIAL OR CONSEQUENTIAL DAMAGES, LOST REVENUE, BUSINESS INTERRUPTION, LOST OR DAMAGED DATA, OR ANY OTHER COMMERCIAL OR ECONOMIC LOSS, WHETHER BASED IN CONTRACT, TORT (INCLUDING NEGLIGENCE), OR ANY OTHER THEORY OF LIABILITY, ARISING OUT OF OR RESULTING FROM ACCESS TO OR POSSESSION OR USE OF THIS DOCUMENT, EVEN IF CSA GROUP HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, INJURY, LOSS, COSTS, OR EXPENSES.

In publishing and making this document available, CSA Group is not undertaking to render professional or other services for or on behalf of any person or entity or to perform any duty owed by any person or entity to another person or entity. The information in this document is directed to those who have the appropriate degree of experience to use and apply its contents, and CSA Group accepts no responsibility whatsoever arising in any way from any and all use of or reliance on the information contained in this document.

CSA Group is a private not-for-profit company that publishes voluntary standards and related documents. CSA Group has no power, nor does it undertake, to render professional or other services for or on behalf of any person or entity or to perform any duty owed by any person or entity to another person or entity. The information in this document is directed to those who have the appropriate degree of experience to use and apply its contents, and CSA Group accepts no responsibility whatsoever arising in any way from any and all use of or reliance on the information contained in this document.

Intellectual property rights and ownership
As between CSA Group and the users of this document (whether it be in printed or electronic form), CSA Group is the owner, or the authorized licensee, of all works contained herein that are protected by copyright, all trade-marks (except as otherwise noted to the contrary), and all inventions and trade secrets that may be contained in this document, whether or not such inventions and trade secrets are protected by patents and applications for patents. Without limitation, the unauthorized use, modification, copying, or disclosure of this document may violate laws that protect CSA Group’s and/or others’ intellectual property and may give rise to a right in CSA Group and/or others to seek legal redress for such use, modification, copying, or disclosure. To the extent permitted by licence or by law, CSA Group reserves all intellectual property rights in this document.

Patent rights
Attention is drawn to the possibility that some of the elements of this standard may be the subject of patent rights. CSA Group shall not be held responsible for identifying any or all such patent rights. Users of this standard are expressly advised that determination of the validity of any such patent rights is entirely their own responsibility.

Authorized use of this document
This document is being provided by CSA Group for informational and non-commercial use only. The user of this document is authorized to do only the following:

If this document is in electronic form:
- load this document onto a computer for the sole purpose of reviewing it;
- search and browse this document; and
- print this document if it is in PDF format.

Limited copies of this document in print or paper form may be distributed only to persons who are authorized by CSA Group to have such copies, and only if this Legal Notice appears on each such copy.

In addition, users may not and may not permit others to
- alter this document in any way or remove this Legal Notice from the attached standard;
- sell this document without authorization from CSA Group; or
- make an electronic copy of this document.

If you do not agree with any of the terms and conditions contained in this Legal Notice, you may not load or use this document or make any copies of the contents hereof, and if you do make such copies, you are required to destroy them immediately. Use of this document constitutes your acceptance of the terms and conditions of this Legal Notice.
Standards Update Service

CSA A23.1:19/CSA A23.2:19
June 2019

Title: Concrete materials and methods of concrete construction/Test methods and standard practices for concrete

To register for e-mail notification about any updates to this publication
• go to store.csagroup.org
• click on CSA Update Service

The List ID that you will need to register for updates to this publication is 2425145.

If you require assistance, please e-mail techsupport@csagroup.org or call 416-747-2233.

Visit CSA Group’s policy on privacy at www.csagroup.org/legal to find out how we protect your personal information.
Canadian Standards Association (operating as “CSA Group”), under whose auspices this National Standard has been produced, was chartered in 1919 and accredited by the Standards Council of Canada to the National Standards system in 1973. It is a not-for-profit, nonstatutory, voluntary membership association engaged in standards development and certification activities.

CSA Group standards reflect a national consensus of producers and users — including manufacturers, consumers, retailers, unions and professional organizations, and governmental agencies. The standards are used widely by industry and commerce and often adopted by municipal, provincial, and federal governments in their regulations, particularly in the fields of health, safety, building and construction, and the environment.

Individuals, companies, and associations across Canada indicate their support for CSA Group’s standards development by volunteering their time and skills to Committee work and supporting CSA Group’s objectives through sustaining memberships. The more than 7000 committee volunteers and the 2000 sustaining memberships together form CSA Group’s total membership from which its Directors are chosen. Sustaining memberships represent a major source of income for CSA Group’s standards development activities.

CSA Group offers certification and testing services in support of and as an extension to its standards development activities. To ensure the integrity of its certification process, CSA Group regularly and continually audits and inspects products that bear the CSA Group Mark.

In addition to its head office and laboratory complex in Toronto, CSA Group has regional branch offices in major centres across Canada and inspection and testing agencies in eight countries. Since 1919, CSA Group has developed the necessary expertise to meet its corporate mission: CSA Group is an independent service organization whose mission is to provide an open and effective forum for activities facilitating the exchange of goods and services through the use of standards, certification and related services to meet national and international needs.

For further information on CSA Group services, write to CSA Group
178 Rexdale Boulevard
Toronto, Ontario, M9W 1R3
Canada

A National Standard of Canada is a standard developed by a Standards Council of Canada (SCC) accredited Standards Development Organization, in compliance with requirements and guidance set out by SCC. More information on National Standards of Canada can be found at www.scc.ca.

SCC is a Crown corporation within the portfolio of Innovation, Science and Economic Development (ISED) Canada. With the goal of enhancing Canada’s economic competitiveness and social well-being, SCC leads and facilitates the development and use of national and international standards. SCC also coordinates Canadian participation in standards development, and identifies strategies to advance Canadian standardization efforts.

Accreditation services are provided by SCC to various customers, including product certifiers, testing laboratories, and standards development organizations. A list of SCC programs and accredited bodies is publicly available at www.scc.ca.

Standards Council of Canada
600-55 Metcalfe Street
Ottawa, Ontario, K1P 6L5
Canada

Cette Norme Nationale du Canada est disponible en versions française et anglaise.

Although the intended primary application of this Standard is stated in its Scope, it is important to note that it remains the responsibility of the users to judge its suitability for their particular purpose.

*A trademark of the Canadian Standards Association, operating as “CSA Group”
National Standard of Canada

CSA A23.1:19/CSA A23.2:19
Concrete materials and methods of concrete construction/Test methods and standard practices for concrete

Published in June 2019 by CSA Group
A not-for-profit private sector organization
178 Rexdale Boulevard, Toronto, Ontario, Canada M9W 1R3

To purchase standards and related publications, visit our Online Store at store.csagroup.org or call toll-free 1-800-463-6727 or 416-747-4044.

ICS 91.080.40; 91.100.30
ISBN 978-1-4883-0744-7

© 2019 Canadian Standards Association
All rights reserved. No part of this publication may be reproduced in any form whatsoever without the prior permission of the publisher.
Contents

Technical Committee on Concrete Materials and Construction 9

Preface 15

CSA A23.1:19, Concrete materials and methods of concrete construction

0 Introduction 18

1 Scope 18
1.1 General 18
1.2 Exclusions 18
1.3 Precasting of concrete in the field 18
1.4 Parking garages 19
1.5 Supplementary specifications 19
1.6 Terminology 19

2 Reference publications 19

3 Definitions 47

4 Materials and concrete properties 55
4.1 Requirements for concrete and alternative methods for specifying concrete 55
4.1.1 Durability requirements 55
4.1.2 Alternatives for specifying concrete 59
4.2 Materials 60
4.2.1 Cements and supplementary cementitious materials 60
4.2.2 Water 61
4.2.3 Aggregates 61
4.2.4 Admixtures 66
4.2.5 Fibres 67
4.2.6 Pigments for integrally coloured concrete 67
4.3 Concrete properties 67
4.3.1 Mix proportions 67
4.3.2 Workability 68
4.3.3 Air entrainment 69
4.3.4 Density 70
4.3.5 Strength 70
4.3.6 Volume stability considerations 70
4.3.7 Chloride ion penetrability 71

4 Quality control 71
4.4 Quality control 71
4.4.1 Responsibilities 71
4.4.2 Concrete acceptance 73

5 Production and delivery 75
5.1 Storage of materials 75
5.1.1 General 75
5.1.2 Cementitious materials 75
5.1.3 Aggregate 76
5.1.4 Admixtures 76
5.2 Production of concrete 76
5.2.1 General 76
5.2.2 Measurement of materials 77
5.2.3 Batching plant 78
5.2.4 Mixing 79
5.2.5 Delivery 81

6 Formwork, reinforcement, and prestressing 84
6.1 Reinforcement 84
6.1.1 Reinforcing steel 84
6.1.2 Bend test 84
6.1.3 Special reinforcement 85
6.1.4 Dissimilar metals 85
6.1.5 Prestressing steel 85
6.1.6 Surface condition of reinforcement 85
6.1.7 Protective coating 86
6.2 Hardware and miscellaneous materials 86
6.2.1 Hardware and ferrous inserts 86
6.2.2 Nonferrous inserts 86
6.2.3 Protective coating 86
6.2.4 Miscellaneous materials 86
6.2.5 Vapour retarder 87
6.3 Storage of reinforcement 87
6.3.1 General 87
6.3.2 Special storage requirements 87
6.4 Construction tolerances for cast-in-place concrete 88
6.4.1 General 88
6.4.2 Cross-sectional dimensions and tolerances 88
6.4.3 Plumbness 89
6.4.4 Relative alignment 90
6.4.5 Levelness 90
6.4.6 Variations from a reference system and general dimensions 90
6.5 Formwork 91
6.5.1 General 91
6.5.2 Drawings for formwork 91
6.5.3 Construction 91
6.6 Fabrication and placement of reinforcement 93
6.6.1 General 93
6.6.2 Hooks and bends 93
6.6.3 Spirals 94
6.6.4 Ties 95
6.6.5 Spacing of reinforcement 96
6.6.6 Concrete cover 96
6.6.7 Support of reinforcement 97
6.6.8 Tolerances for location of reinforcement 99
6.6.9 Splices of reinforcement 100
6.6.10 Welding of reinforcement 100
6.6.11 Inspection 100
6.7 Fabrication and placement of hardware and other embedded items 100
6.7.1 General 100
6.7.2 Placing of hardware 100
6.7.3 Tolerances for placing anchor bolts and hardware 101
6.7.4 Welding of hardware 101
6.7.5 Conduits and pipes embedded in concrete 102
6.8 Post-tensioning 103
6.8.1 General 103
6.8.2 Unbonded tendons 104
6.8.3 Bonded tendons 106
6.8.4 Cement grout for bonded tendons 107
6.8.5 Preparation for post-tensioning 109
6.8.6 Application and measurement of prestressing force 112
6.8.7 Grouting 113

7 Placing, finishing, and curing concrete 115
7.1 Preconstruction quality planning 115
7.1.1 General 115
7.1.2 Concrete mixes for interior concrete floors 115
7.2 Hot and cold weather concreting 116
7.2.1 Hot weather concreting — Job preparation 116
7.2.2 Cold weather concreting 116
7.3 Jointing 117
7.3.1 Construction joints 117
7.3.2 Contraction joints 118
7.3.3 Isolation joints 119
7.3.4 Expansion joints 120
7.3.5 Joint filling 120
7.4 Storage of materials used for placing, finishing, and curing 120
7.4.1 General 120
7.4.2 Fabricated and proprietary materials 120
7.5 Placing of concrete 120
7.5.1 General 120
7.5.2 Handling 121
7.5.3 Depositing 122
7.5.4 Consolidation 124
7.5.5 Concreting underwater 124
7.5.6 Concrete placed by tremie 125
7.5.7 Concreting tubular piles and drilled shafts 125
7.6 Protection of plastic concrete 126
7.6.1 General 126
7.6.2 Initial curing for high-strength and high-performance concrete 127
7.6.3 Mass concrete 127
7.7 Finishing of concrete floor surfaces 129
7.7.1 Surface tolerances 129
7.7.2 Correction of floor flatness deficiencies 130
7.7.3 Initial finishing of horizontal surfaces 130
7.7.4 Final finishing 131
7.7.5 Abrasion and wear resistance 133
7.7.6 Nonslip surfaces 133
7.7.7 Scratch finish 133
7.7.8 Grinding 133
7.7.9 Moisture condition of concrete floors 134
7.8 Curing 134
7.8.1 General 134
7.8.2 Methods and materials 134
7.8.3 Curing for special requirements 135
7.9 Bonded toppings 136
7.9.1 Types 136
7.9.2 Special concrete mixtures for toppings 136
7.9.3 Monolithic toppings 137
7.9.4 Bonding systems 137
7.9.5 Bonding fresh concrete to rock 138
7.9.6 Tensile bond 138
7.9.7 Testing frequency 138
7.9.8 Finishing bonded toppings 138
7.9.9 Curing 139
7.10 Finishing of formed surfaces 139
7.10.1 General 139
7.10.2 Formed surface finishes 139
7.10.3 Patching 140
7.10.4 Rubbed finishes 141

8 Concrete with special performance or material requirements 142
8.1 General 142
8.1.1 Application 142
8.1.2 Purpose 142
8.1.3 Criteria 142
8.1.4 Relevant clauses 142
8.1.5 Performance evaluation 143
8.1.6 Materials 143
8.1.7 Mix proportions 143
8.1.8 Placing and curing 143
8.2 High-performance concrete and ultra-high performance concrete 143
8.3 Architectural concrete 143
8.3.1 General 143
8.3.2 Reference samples 144
8.3.3 Mock-up field samples 144
8.3.4 Formwork for special architectural finishes 144
8.3.5 Placing of architectural cast-in-place concrete 145
8.3.6 Special finishes 146
8.4 Pervious concrete 146
8.5 High-strength concrete 147
8.5.1 General 147
8.5.2 Aggregate 147
8.5.3 Mixing 147
8.5.4 Trial mixes 147
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5.5</td>
<td>Temperature</td>
<td>147</td>
</tr>
<tr>
<td>8.5.6</td>
<td>Consolidation</td>
<td>147</td>
</tr>
<tr>
<td>8.5.7</td>
<td>Curing and protection</td>
<td>147</td>
</tr>
<tr>
<td>8.5.8</td>
<td>Strength testing</td>
<td>148</td>
</tr>
<tr>
<td>8.6</td>
<td>Self-consolidating concrete</td>
<td>148</td>
</tr>
<tr>
<td>8.6.1</td>
<td>General</td>
<td>148</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Materials</td>
<td>149</td>
</tr>
<tr>
<td>8.6.3</td>
<td>Performance requirements for SCC</td>
<td>149</td>
</tr>
<tr>
<td>8.6.4</td>
<td>Mixture proportions</td>
<td>149</td>
</tr>
<tr>
<td>8.6.5</td>
<td>Delivery and placing</td>
<td>150</td>
</tr>
<tr>
<td>8.6.6</td>
<td>Finishing</td>
<td>150</td>
</tr>
<tr>
<td>8.6.7</td>
<td>Formwork</td>
<td>150</td>
</tr>
<tr>
<td>8.6.8</td>
<td>Curing</td>
<td>150</td>
</tr>
<tr>
<td>8.7</td>
<td>Concrete made with high-volume supplementary cementitious materials</td>
<td>150</td>
</tr>
<tr>
<td>8.7.1</td>
<td>Proportion of SCM</td>
<td>150</td>
</tr>
<tr>
<td>8.7.2</td>
<td>Materials</td>
<td>151</td>
</tr>
<tr>
<td>8.7.3</td>
<td>Trial mixes</td>
<td>151</td>
</tr>
<tr>
<td>8.7.4</td>
<td>Curing requirements</td>
<td>151</td>
</tr>
<tr>
<td>8.8</td>
<td>Low-shrinkage concrete</td>
<td>152</td>
</tr>
<tr>
<td>8.8.1</td>
<td>General</td>
<td>152</td>
</tr>
<tr>
<td>8.8.2</td>
<td>Qualification testing</td>
<td>152</td>
</tr>
<tr>
<td>8.8.3</td>
<td>Qualification of the mixture proportions</td>
<td>152</td>
</tr>
<tr>
<td>8.9</td>
<td>No-slump concrete</td>
<td>152</td>
</tr>
<tr>
<td>8.9.1</td>
<td>General</td>
<td>152</td>
</tr>
<tr>
<td>8.9.2</td>
<td>Trial mixes</td>
<td>153</td>
</tr>
<tr>
<td>8.9.3</td>
<td>Concrete mix design</td>
<td>153</td>
</tr>
<tr>
<td>8.9.4</td>
<td>Field testing of no-slump concrete</td>
<td>153</td>
</tr>
<tr>
<td>8.9.5</td>
<td>Consolidation</td>
<td>153</td>
</tr>
<tr>
<td>8.9.6</td>
<td>Slump and air content tests</td>
<td>153</td>
</tr>
<tr>
<td>8.9.7</td>
<td>Contractor co-operation</td>
<td>153</td>
</tr>
<tr>
<td>8.9.8</td>
<td>Pre-construction meeting</td>
<td>154</td>
</tr>
<tr>
<td>8.10</td>
<td>Roller-compacted concrete</td>
<td>154</td>
</tr>
<tr>
<td>8.11</td>
<td>Controlled low-strength materials (CLSM)</td>
<td>154</td>
</tr>
<tr>
<td>8.11.1</td>
<td>General</td>
<td>154</td>
</tr>
<tr>
<td>8.11.2</td>
<td>Unshrinkable fill</td>
<td>154</td>
</tr>
<tr>
<td>8.12</td>
<td>Concrete made with alternative supplementary cementitious materials</td>
<td>156</td>
</tr>
<tr>
<td>8.12.1</td>
<td>General</td>
<td>156</td>
</tr>
<tr>
<td>8.12.2</td>
<td>Materials</td>
<td>156</td>
</tr>
<tr>
<td>8.12.3</td>
<td>Use in concrete</td>
<td>156</td>
</tr>
<tr>
<td>8.13</td>
<td>Shotcrete</td>
<td>156</td>
</tr>
<tr>
<td>8.13.1</td>
<td>General</td>
<td>156</td>
</tr>
<tr>
<td>8.13.2</td>
<td>Materials</td>
<td>157</td>
</tr>
<tr>
<td>8.13.3</td>
<td>Performance requirements for shotcrete</td>
<td>157</td>
</tr>
<tr>
<td>8.13.4</td>
<td>Mixture proportions</td>
<td>158</td>
</tr>
<tr>
<td>8.13.5</td>
<td>Delivery</td>
<td>159</td>
</tr>
<tr>
<td>8.13.6</td>
<td>Placing</td>
<td>159</td>
</tr>
<tr>
<td>8.13.7</td>
<td>Consolidation considerations</td>
<td>159</td>
</tr>
<tr>
<td>8.13.8</td>
<td>Hardened shotcrete testing</td>
<td>160</td>
</tr>
</tbody>
</table>
9 Concrete for housing and small buildings (R class concrete) 160
9.1 General 160
9.2 Formwork and formed sections 161
9.3 Requirements for concrete 161
9.4 Chloride exposure of R class concretes 161
9.5 Sulphate exposure of R class concretes 161

Annexes
Annex A (informative) — Special cements 189
Annex B (informative) — Alkali-aggregate reaction 191
Annex C (informative) — Tolerances: Principles, preferred sizes, and usage 220
Annex D (informative) — Guidelines for curing and protection 224
Annex E (informative) “Reserved” — Concrete surface tolerances: Elevation, slope, and waviness 226
Annex F (informative) — Abrasion resistance of concrete surfaces 227
Annex G (informative) — Sample grouting record 231
Annex H (informative) — Fibre-reinforced concrete 233
Annex I (informative) — High-performance concrete 237
Annex J (informative) — Guide for selecting alternatives when ordering concrete using Table 5 243
Annex K (informative) — Concrete made with high-volume supplementary cementitious materials 255
Annex L (informative) — Mineral filler as an aggregate for concrete 259
Annex M (informative) — Sustainable development, construction, and concrete 262
Annex N (informative) — Requirements for pervious concrete 273
Annex O (informative) — Aggregate made from recycled concrete for use in hydraulic cement concrete 278
Annex P (informative) — Impact of sulphides in aggregate on concrete behaviour and global approach to determine potential deleterious reactivity of sulphide-bearing aggregates 288
Annex Q (informative) — Simple method to optimize combined aggregate gradation 341
Annex R (informative) — Residential concrete construction 351
Annex S (informative) — Concrete made with carbon dioxide as an additive 360
Annex T (informative) — Mass concrete 364
Annex U (informative) — Ultra-high performance concrete (UHPC) 376

CSA A23.2:19, Test methods and standard practices for concrete

1 Scope 411
1.1 General 411
1.2 Hazards 411
1.3 Dimensions 411
1.4 Terminology 411

2 Reference publications 412

3 Definitions 412

4 Reporting 412

Test methods
A23.2-1A — Sampling aggregates for use in concrete 413
A23.2-2A — Sieve analysis of fine and coarse aggregate 421
A23.2-3A — Clay lumps in natural aggregate 427
A23.2-4A — Low-density granular material in aggregate 431
A23.2-5A — Amount of material finer than 80 μm in aggregate 436
A23.2-6A — Relative density and absorption of fine aggregate 440
A23.2-7A — Test for organic impurities in fine aggregates for concrete 447
A23.2-8A — Measuring mortar-strength properties of fine aggregate 450
A23.2-9A — Soundness of fine and coarse aggregate by use of magnesium sulphate 457
A23.2-10A — Bulk density of aggregate 465
A23.2-11A — Surface moisture in fine and coarse aggregate 470
A23.2-12A — Relative density and absorption of coarse aggregate 478
A23.2-13A — Flat and elongated particles in coarse aggregate 485
A23.2-14A — Potential expansivity of aggregates (procedure for length change due to alkali-aggregate reaction in concrete prisms at 38 °C) 495
A23.2-15A — Petrographic examination of aggregates 509
A23.2-16A — Resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine 547
A23.2-17A — Resistance to degradation of large-size coarse aggregate by abrasion and impact in the Los Angeles machine 554
A23.2-23A — Test method for the resistance of fine aggregate to degradation by abrasion in the Micro-Deval apparatus 558
A23.2-24A — Test method for the resistance of unconfined coarse aggregate to freezing and thawing 568
A23.2-25A — Test method for detection of alkali-silica reactive aggregate by accelerated expansion of mortar bars 579
A23.2-26A — Determination of potential alkali-carbonate reactivity of quarried carbonate rocks by chemical composition 588
A23.2-27A — Standard Practice to identify degree of alkali-reactivity of aggregates and to identify measures to avoid deleterious expansion in concrete 594
A23.2-28A — Standard Practice for laboratory testing to demonstrate the effectiveness of supplementary cementitious materials and lithium-based admixtures to prevent alkali-silica reaction in concrete 611
A23.2-29A — Test method for the resistance of coarse aggregate to degradation by abrasion in the Micro-Deval apparatus 619
A23.2-30A — Standard Practice for sampling, testing, and inspection of aggregate products for use in concrete for qualification and acceptance purposes 627
A23.2-1B — Testing for properties of flowable grout 636
A23.2-2B — Determination of sulphate ion content in groundwater 643
A23.2-3B — Determination of total or water-soluble sulphate ion content of soil 646
A23.2-4B — Sampling and determination of water-soluble chloride ion content in hardened grout or concrete 650
A23.2-6B — Determination of bond strength of bonded toppings and overlays and of direct tensile strength of concrete, mortar, and grout 658
A23.2-7B — Random sampling of construction materials 666
A23.2-8B — Determination of water-soluble sulphate ion content of recycled aggregates containing crushed concrete 674
A23.2-1C — Sampling plastic concrete 677
A23.2-2C — Making concrete mixes in the laboratory 681
<table>
<thead>
<tr>
<th>Clause</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A23.2-3C</td>
<td>Making and curing concrete compression and flexural test specimens</td>
<td>688</td>
</tr>
<tr>
<td>A23.2-4C</td>
<td>Air content of plastic concrete by the pressure method</td>
<td>702</td>
</tr>
<tr>
<td>A23.2-5C</td>
<td>Slump of concrete</td>
<td>708</td>
</tr>
<tr>
<td>A23.2-6C</td>
<td>Density and yield of plastic concrete</td>
<td>713</td>
</tr>
<tr>
<td>A23.2-7C</td>
<td>Air content of plastic concrete by the volumetric method</td>
<td>719</td>
</tr>
<tr>
<td>A23.2-8C</td>
<td>Flexural strength of concrete (using simple beam with third-point loading)</td>
<td>729</td>
</tr>
<tr>
<td>A23.2-9C</td>
<td>Compressive strength of cylindrical concrete specimens</td>
<td>733</td>
</tr>
<tr>
<td>A23.2-10C</td>
<td>Accelerating the curing of concrete cylinders and determining their compressive strength</td>
<td>748</td>
</tr>
<tr>
<td>A23.2-11C</td>
<td>Water content, density, absorption, and voids in hardened concrete, grout, or mortar</td>
<td>756</td>
</tr>
<tr>
<td>A23.2-12C</td>
<td>Making, curing, and testing compression test specimens of no-slump concrete</td>
<td>760</td>
</tr>
<tr>
<td>A23.2-13C</td>
<td>Splitting tensile strength of cylindrical concrete specimens</td>
<td>766</td>
</tr>
<tr>
<td>A23.2-14C</td>
<td>Obtaining and testing drilled cores for compressive strength testing</td>
<td>774</td>
</tr>
<tr>
<td>A23.2-15C</td>
<td>Evaluation of concrete strength in place using the pullout test</td>
<td>778</td>
</tr>
<tr>
<td>A23.2-16C</td>
<td>Determination of steel or synthetic fibre content in plastic concrete</td>
<td>790</td>
</tr>
<tr>
<td>A23.2-17C</td>
<td>Temperature of freshly mixed hydraulic cement concrete</td>
<td>794</td>
</tr>
<tr>
<td>A23.2-18C</td>
<td>Determination of total water content of normal weight fresh concrete</td>
<td>797</td>
</tr>
<tr>
<td>A23.2-19C</td>
<td>Slump flow of concrete</td>
<td>802</td>
</tr>
<tr>
<td>A23.2-20C</td>
<td>Passing ability of self-consolidating concrete by J-ring and slump cone</td>
<td>807</td>
</tr>
<tr>
<td>A23.2-21C</td>
<td>Test Method for length change of hardened concrete</td>
<td>812</td>
</tr>
<tr>
<td>A23.2-22C</td>
<td>Scaling resistance of concrete surfaces exposed to deicing chemicals using mass loss</td>
<td>819</td>
</tr>
<tr>
<td>A23.2-23C</td>
<td>Electrical indication of concrete’s ability to resist chloride ion penetration</td>
<td>827</td>
</tr>
<tr>
<td>A23.2-24C</td>
<td>Standard Practice for sampling, testing, and inspection of concrete for qualification purposes</td>
<td>839</td>
</tr>
<tr>
<td>A23.2-25C</td>
<td>Standard Practice for sampling, testing, and inspection of concrete for acceptance purposes</td>
<td>846</td>
</tr>
<tr>
<td>A23.2-26C</td>
<td>Bulk electrical resistivity of concrete</td>
<td>855</td>
</tr>
<tr>
<td>A23.2-1D</td>
<td>Moulds for forming vertical concrete test cylinders</td>
<td>866</td>
</tr>
<tr>
<td>Annex A (informative)</td>
<td>— Nondestructive methods for testing concrete</td>
<td>871</td>
</tr>
<tr>
<td>Annex B (informative)</td>
<td>— Form for reporting compressive strength of concrete test cylinders</td>
<td>876</td>
</tr>
</tbody>
</table>
Technical Committee on Concrete Materials and Construction

C.A. Rogers
Beeton, Ontario, Canada
Category: General Interest

G.H. Leaman
Stantec Consulting Ltd.,
Dartmouth, Nova Scotia, Canada
Category: Professional Services

P.R. Trunk
P R Trunk Ltd.,
Midland, Ontario, Canada
Category: Supplier Raw Materials

A.R. Alizadeh
Giatec Scientific Inc.,
Ottawa, Ontario, Canada
Non-voting

O.R. Antommattei
Kiewit Corporation Kiewit Engineering Co.,
Omaha, Nebraska, USA
Non-voting

D. Baker
CRH Canada Group Inc.,
Mississauga, Ontario, Canada
Non-voting

J. Balinski
Amec Foster Wheeler,
Hamilton, Ontario, Canada
Non-voting

M.T. Bassuoni
University of Manitoba,
Winnipeg, Manitoba, Canada
Non-voting

C. Bédard
Euclid Admixture Canada Inc.,
St-Hubert, Québec, Canada
Category: Supplier Raw Materials

L. Bédard
Association béton Québec,
Boucherville, Québec, Canada
Category: Producer Interest

P. Belanger
Belanger Engineering,
Mississauga, Ontario, Canada
Category: Professional Services
<table>
<thead>
<tr>
<th>Name</th>
<th>Company/Institution</th>
<th>Location</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y. Brousseau</td>
<td>Mapei Inc., Laval, Québec, Canada</td>
<td></td>
<td>Supplier Raw Materials</td>
</tr>
<tr>
<td>R. Burak</td>
<td>Canadian Precast/Prestressed Concrete Institute, Ottawa, Ontario, Canada</td>
<td></td>
<td>Producer Interest</td>
</tr>
<tr>
<td>K. Cail</td>
<td>CarbonCure Technologies, Halifax, Nova Scotia, Canada</td>
<td></td>
<td>Non-voting</td>
</tr>
<tr>
<td>B. Clark</td>
<td>CTL Group, Skokie, Illinois, USA</td>
<td></td>
<td>Non-voting</td>
</tr>
<tr>
<td>S. Cumming</td>
<td>WSP Canada Inc., Richmond, British Columbia, Canada</td>
<td></td>
<td>Non-voting</td>
</tr>
<tr>
<td>N.A. Cumming</td>
<td>Celeritas Consultants Ltd., Richmond, British Columbia, Canada</td>
<td></td>
<td>Professional Services</td>
</tr>
<tr>
<td>B. Czarnecki</td>
<td>Tetra Tech Canada, Calgary, Alberta, Canada</td>
<td></td>
<td>Non-voting</td>
</tr>
<tr>
<td>M. Dalkie</td>
<td>Lafarge Canada Inc., Richmond, British Columbia, Canada</td>
<td></td>
<td>Producer Interest</td>
</tr>
<tr>
<td>A. Dowling</td>
<td>Graham Group Ltd., Edmonton, Alberta, Canada</td>
<td></td>
<td>Non-voting</td>
</tr>
<tr>
<td>B. Durand</td>
<td>IREQ, Varennes, Québec, Canada</td>
<td></td>
<td>Non-voting</td>
</tr>
<tr>
<td>H. Dutrisac</td>
<td>Cement Association of Canada (CAC), Ottawa, Ontario, Canada</td>
<td></td>
<td>Non-voting</td>
</tr>
<tr>
<td>S. Fasullo</td>
<td>Davroc Testing Laboratories Inc., Brampton, Ontario, Canada</td>
<td></td>
<td>Professional Services</td>
</tr>
<tr>
<td>M. Fiander</td>
<td>Quality Concrete — Dartmouth, Dartmouth, Nova Scotia, Canada</td>
<td></td>
<td>Producer Interest</td>
</tr>
<tr>
<td>Name</td>
<td>Organization</td>
<td>Category</td>
<td>Voting Status</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>--------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>S.H. Foo</td>
<td>Public Services and Procurement Canada, Gatineau, Quebec, Canada</td>
<td></td>
<td>Non-voting</td>
</tr>
<tr>
<td>B. Fournier</td>
<td>Laval University, Québec, Québec, Canada</td>
<td>Category: General Interest</td>
<td>Non-voting</td>
</tr>
<tr>
<td>D. Gajich</td>
<td>Votorantim Cement North America/St. Marys CBM, Toronto, Ontario, Canada</td>
<td></td>
<td>Non-voting</td>
</tr>
<tr>
<td>R.H. Gifford</td>
<td>Lehigh Hanson Materials Limited, Calgary, Alberta, Canada</td>
<td>Category: Producer Interest</td>
<td>Non-voting</td>
</tr>
<tr>
<td>K. Habib</td>
<td>CSA Group, Edmonton, Alberta, Canada</td>
<td></td>
<td>Non-voting</td>
</tr>
<tr>
<td>G. Haddad</td>
<td>Saint-Lambert, Québec, Canada</td>
<td></td>
<td>Non-voting</td>
</tr>
<tr>
<td>R.D. Hooton</td>
<td>University of Toronto, Toronto, Ontario, Canada</td>
<td>Category: General Interest</td>
<td>Non-voting</td>
</tr>
<tr>
<td>Y. Hughes</td>
<td>Arnc Foster Wheeler Environment & Infrastructure, St. John’s, Newfoundland and Labrador, Canada</td>
<td></td>
<td>Non-voting</td>
</tr>
<tr>
<td>R.C. Johnson</td>
<td>Lafarge Canada Inc., Edmonton, Alberta, Canada</td>
<td></td>
<td>Non-voting</td>
</tr>
<tr>
<td>A.J. Kaminker</td>
<td>exp Services Inc., Markham, Ontario, Canada</td>
<td></td>
<td>Non-voting</td>
</tr>
<tr>
<td>B. Kanters</td>
<td>Concrete Ontario, Mississauga, Ontario, Canada</td>
<td>Category: Producer Interest</td>
<td>Non-voting</td>
</tr>
<tr>
<td>L. Keller</td>
<td>Ellis-Don Construction Ltd., Mississauga, Ontario, Canada</td>
<td>Category: User Interest</td>
<td>Non-voting</td>
</tr>
<tr>
<td>G.R. Kinney</td>
<td>Concrete Floor Contractors Association of Canada, Oakville, Ontario, Canada</td>
<td>Category: User Interest</td>
<td>Non-voting</td>
</tr>
<tr>
<td>Name</td>
<td>Company/Institution</td>
<td>Location</td>
<td>Category</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>----------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>P. Lacroix</td>
<td>Ville de Montréal, Montréal, Québec, Canada</td>
<td></td>
<td>User Interest</td>
</tr>
<tr>
<td>P. Lamothe</td>
<td>SNC-Lavalin, Montréal, Québec, Canada</td>
<td></td>
<td>Professional Services</td>
</tr>
<tr>
<td>W.S. Langley</td>
<td>W. S. Langley Concrete & Materials Technology Inc.,</td>
<td>Lower Sackville, Nova Scotia, Canada</td>
<td>Professional Services</td>
</tr>
<tr>
<td>A. Luis</td>
<td>McInnis Cement, Montréal, Quebec, Canada</td>
<td></td>
<td>Non-voting</td>
</tr>
<tr>
<td>L. Mammoliti</td>
<td>Hanson Ready Mix, Cambridge, Ontario, Canada</td>
<td></td>
<td>Non-voting</td>
</tr>
<tr>
<td>P. Masson</td>
<td>Concrete Alberta, Calgary, Alberta, Canada</td>
<td></td>
<td>Producer Interest</td>
</tr>
<tr>
<td>R.J. McGrath</td>
<td>Cement Association of Canada (CAC), Ottawa, Ontario, Canada</td>
<td></td>
<td>Supplier Raw Materials</td>
</tr>
<tr>
<td>G.G. McIntee</td>
<td>St. Lawrence Testing & Inspection Company Ltd.,</td>
<td>Cornwall, Ontario, Canada</td>
<td>Non-voting</td>
</tr>
<tr>
<td>E. Moffatt</td>
<td>University of New Brunswick Dept. of Civil Engineering,</td>
<td>Fredericton, New Brunswick, Canada</td>
<td>Non-voting</td>
</tr>
<tr>
<td>L.J. Mugford</td>
<td>James Dick Construction Ltd., Clarksburg, Ontario, Canada</td>
<td></td>
<td>Non-voting</td>
</tr>
<tr>
<td>R.E. Munro</td>
<td>Concrete Advice, Toronto, Ontario, Canada</td>
<td></td>
<td>General Interest</td>
</tr>
<tr>
<td>C. Nazair</td>
<td>Transports Québec, Québec, Québec, Canada</td>
<td></td>
<td>User Interest</td>
</tr>
<tr>
<td>Name</td>
<td>Company/Institution</td>
<td>Location</td>
<td>Category</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>---------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>M. Nokken</td>
<td>Concordia University, Montréal, Québec, Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Patullo</td>
<td>Avenue Building Corp., Bolton, Ontario, Canada</td>
<td></td>
<td>Category: User Interest</td>
</tr>
<tr>
<td>V.H. Perry</td>
<td>V. iConsult Inc., Calgary, Alberta, Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N.J. Popoff</td>
<td>St. Marys Cement Inc. (U.S.), Detroit, Michigan, USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Prézeau</td>
<td>Hydro-Quebec, Montréal, Québec, Canada</td>
<td></td>
<td>Category: User Interest</td>
</tr>
<tr>
<td>J. Rakocevic</td>
<td>Toronto Transit Commission, Toronto, Ontario, Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J.D. Robson</td>
<td>Tetra Tech Canada, Edmonton, Alberta, Canada</td>
<td></td>
<td>Category: Professional Services</td>
</tr>
<tr>
<td>H.C. Schell</td>
<td>Ministry of Transportation MERO, Downsview, Ontario, Canada</td>
<td></td>
<td>Category: User Interest</td>
</tr>
<tr>
<td>M. Shehata</td>
<td>Ryerson University, Toronto, Ontario, Canada</td>
<td></td>
<td>Category: General Interest</td>
</tr>
<tr>
<td>F.H. Shrimer</td>
<td>Golder Associates, Ltd., Vancouver, British Columbia, Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. Stanzel</td>
<td>Lehigh Cement, Cambridge, Ontario, Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Strang</td>
<td>Lake George, New Brunswick, Canada</td>
<td></td>
<td>Category: General Interest</td>
</tr>
<tr>
<td>W. Thaha</td>
<td>Canada Building Materials, Toronto, Ontario, Canada</td>
<td></td>
<td>Category: Producer Interest</td>
</tr>
</tbody>
</table>
Preface

There have been many technical, editorial, and formatting changes throughout this edition; the most significant technical changes are the following:

a) Requirements and guidance for materials qualification and for quality assessment, previously included in Clause 4 of A23.1, have been extensively reorganized and clarified into the following new standard practices:
 i) A23.2-30A, *Standard Practice for sampling, testing, and inspection of aggregate products for use in concrete for qualification and acceptance purposes*;
 ii) A23.2-24C, *Standard Practice for sampling, testing, and inspection of concrete for qualification and acceptance purposes*; and

b) Additional provisions have been added for mass concrete including the submission of a thermal control plan for controlling and monitoring temperature.

c) There is a new requirement for the slump of concrete for interior concrete floors, partly for reasons of health and safety.

d) Annex P on the potentially deleterious impact of sulphide minerals in concrete aggregate has been substantially updated, including a new performance evaluation protocol, revised criteria on maximum sulphur content of aggregates, and three new preliminary test methods for the determination of the sulphide content of aggregate and for assessing the potential for deleterious oxidation of sulphide-bearing aggregates.

e) Annex S, which was first published as an amendment to the 2014 edition, provides information on concrete made with carbon dioxide in either a gaseous or liquid form as an additive to reduce the carbon footprint of cement and concrete.

f) The new Annex T on mass concrete has been added providing information on material properties and their effect on the temperature rise, measures to control and monitor temperature, temperature limits for maximum concrete temperature and maximum temperature difference for concrete in mass placements, and best practices to protect and cure mass concrete.

g) The new Annex U has been added to provide information for materials and methods of construction for the use of ultra-high performance concrete (UHPC) with minimum strengths of 120 and 150 MPa.

h) The new test method has been added to CSA A23.2: A23.2-26C, *Bulk electrical resistivity of concrete*. This test provides an indication of resistance of concrete to the penetration of fluids and aggressive ions.

The Technical Committee includes representatives from most geographical areas of Canada and from all sectors of the industry: concrete producers, specifying and regulatory authorities, materials consultants, concrete testing laboratories, researchers, and teachers. The Technical Committee intends to review and update these Standards on a continuing basis and to maintain a close liaison with the CSA Technical Committees on Design of Concrete Structures and Cementitious Materials.

CSA Group acknowledges that the development of these Standards were made possible in part by the financial support of the Canadian Ready Mixed Concrete Association.
These Standards were prepared by the Technical Committee on Concrete Materials and Construction, under the jurisdiction of the Strategic Steering Committee on Concrete and Related Products, and have been formally approved by the Technical Committee.

These Standards have been developed in compliance with Standards Council of Canada requirements for National Standards of Canada. They have been published as National Standards of Canada by CSA Group.

Notes:
1) Use of the singular does not exclude the plural (and vice versa) when the sense allows.
2) Although the intended primary application of this Standard is stated in its Scope, it is important to note that it remains the responsibility of the users of the Standard to judge its suitability for their particular purpose.
3) This Standard was developed by consensus, which is defined by CSA Policy governing standardization — Code of good practice for standardization as “substantial agreement. Consensus implies much more than a simple majority, but not necessarily unanimity”. It is consistent with this definition that a member may be included in the Technical Committee list and yet not be in full agreement with all clauses of this Standard.
4) To submit a request for interpretation of this Standard, please send the following information to inquiries@csagroup.org and include “Request for interpretation” in the subject line:
 a) define the problem, making reference to the specific clause, and, where appropriate, include an illustrative sketch;
 b) provide an explanation of circumstances surrounding the actual field condition; and
 c) where possible, phrase the request in such a way that a specific “yes” or “no” answer will address the issue.
Committee interpretations are processed in accordance with the CSA Directives and guidelines governing standardization and are available on the Current Standards Activities page at standardsactivities.csa.ca.
5) This Standard is subject to a review within five years from the date of publication. Suggestions for its improvement will be referred to the appropriate committee. To submit a proposal for change, please send the following information to inquiries@csagroup.org and include “Proposal for change” in the subject line:
 a) Standard designation (number);
 b) relevant clause, table, and/or figure number;
 c) wording of the proposed change; and rationale for the change.
National Standard of Canada

CSA A23.1:19
Concrete materials and methods of concrete construction

Published in June 2019 by CSA Group
A not-for-profit private sector organization
178 Rexdale Boulevard, Toronto, Ontario, Canada M9W 1R3

To purchase standards and related publications, visit our Online Store at store.csagroup.org or call toll-free 1-800-463-6727 or 416-747-4044.

ICS 91.080.40; 91.100.30
ISBN 978-1-4883-0744-7

© 2019 Canadian Standards Association
All rights reserved. No part of this publication may be reproduced in any form whatsoever without the prior permission of the publisher.
0 Introduction
This Standard is intended to be used in its entirety. Caution should be exercised in extracting individual clauses and using them in project specifications, since taking them out of context can change their meaning.

A number of notes and several annexes, inserted for guidance, can in some cases be made mandatory by appropriate references in contract documents.

Many clauses provide alternatives and require choices to be made by the user of this Standard. The actual choices should be clearly identified in contract documents.

1 Scope

1.1 General
This Standard provides the requirements for materials and methods of construction for
a) cast-in-place concrete and concrete precast in the field; and
b) residential concrete used in the construction of buildings conforming to Part 9 of the National Building Code of Canada (NBCC).

1.2 Exclusions
This Standard does not specify the following:
 a) requirements for the design of concrete structures, which are provided in CSA A23.3 and CSA S6;
 b) designs of specialty concrete products, which are described in separate CSA Group Standards;
 c) test methods for concrete, which are provided in CSA A23.2;
 d) design provisions governing the fire resistance of reinforced concrete structures, which are set out in the NBCC;
 e) requirements for the plant production of precast concrete, which are provided in CSA A23.4; and
 f) use of proprietary materials or methods of construction.

Note: Proprietary materials or methods of construction may be permitted by the owner under a separate specification, provided that the quality of the resulting construction meets the minimum requirements of this Standard.

1.3 Precasting of concrete in the field

1.3.1
At the option of the owner, precasting of concrete in the field or in a plant (temporary or permanent) is governed by this Standard or by CSA A23.4, except as limited by Clauses 1.3.2, 1.3.3, and 1.3.4 of this Standard.

Note: Guidelines for such a choice are provided in CSA A23.4.