Australian Standard®

Piling—Design and installation
This Australian Standard® was prepared by Committee CE-018, Piling. It was approved on behalf of the Council of Standards Australia on 19 June 2009. This Standard was published on 4 November 2009.

The following are represented on Committee CE-018:

- Australian Building Codes Board
- Australian Geomechanics Society
- AUSTROADS
- Concrete Institute of Australia
- Engineers Australia
- Monash University
- Piling and Foundation Specialists Federation
- University of Sydney

This Standard was issued in draft form for comment as DR 08180. Standards Australia wishes to acknowledge the participation of the expert individuals that contributed to the development of this Standard through their representation on the Committee and through the public comment period.

Keeping Standards up-to-date
Australian Standards® are living documents that reflect progress in science, technology and systems. To maintain their currency, all Standards are periodically reviewed, and new editions are published. Between editions, amendments may be issued.

Standards may also be withdrawn. It is important that readers assure themselves they are using a current Standard, which should include any amendments that may have been published since the Standard was published.

Detailed information about Australian Standards, drafts, amendments and new projects can be found by visiting www.standards.org.au

Standards Australia welcomes suggestions for improvements, and encourages readers to notify us immediately of any apparent inaccuracies or ambiguities. Contact us via email at mail@standards.org.au, or write to Standards Australia, GPO Box 476, Sydney, NSW 2001.
PREFACE

This Standard was prepared by the Standards Australia Committee CE-018, Piling, to supersede AS 2159—1995.

This Standard incorporates Amendment No. 1 (October 2010). The changes required by the Amendment are indicated in the text by a marginal bar and amendment number against the clause, note, table, figure or part thereof affected.

The objective of this Standard is to provide requirements for design and installation of piles for supporting structures. The object of this revision is to align with updated AS 1170 Standards and reflect changes in practice since the previous edition.

Major changes to the previous edition are as follows:

(a) Revision of the overall Standard.

(b) Revision of the setting of strength reduction factors, that is, the selection of the ‘safety’ level appropriate to the installation being designed.

(c) Revision of the negative skin friction requirements.

(d) Revision of durability requirements to assist designers to achieve predicted life.

(e) Include requirements for newer pile types and installation methods including steel screw piles, jacking, screwing and screwed cast in place.

(f) Requirement for some testing to be ‘normative’.

(g) Inclusion of new types of test including rapid pile testing.

The terms ‘normative’ and ‘informative’ have been used in this Standard to define the application of the appendix to which they apply. A ‘normative’ appendix is an integral part of a Standard, whereas an ‘informative’ appendix is only for information and guidance.

Statements expressed in mandatory terms in notes to tables are deemed to be requirements of this Standard.

Notes to the text contain information and guidance and are not considered to be an integral part of the Standard.
CONTENTS

FOREWORD.. 5

SECTION 1 SCOPE AND GENERAL
 1.1 SCOPE ... 6
 1.2 NORMATIVE REFERENCES .. 6
 1.3 DEFINITIONS ... 7
 1.4 NOTATION ... 10
 1.5 CLASSIFICATION OF PILES... 13

SECTION 2 SITE INVESTIGATION
 2.1 GENERAL ... 15
 2.2 INFORMATION REQUIRED.. 15

SECTION 3 DESIGN REQUIREMENTS AND PROCEDURES
 3.1 OBJECTIVE OF PILE DESIGN ... 16
 3.2 GENERAL DESIGN REQUIREMENTS .. 16
 3.3 ACTIONS AND COMBINATIONS FOR STRENGTH AND SERVICEABILITY DESIGN... 17

SECTION 4 GEOTECHNICAL DESIGN
 4.1 GENERAL ... 20
 4.2 ASSESSMENT OF GEOTECHNICAL PARAMETERS .. 20
 4.3 GENERAL PRINCIPLES OF GEOTECHNICAL STRENGTH DESIGN 21
 4.4 DESIGN REQUIREMENTS FOR STRENGTH.. 24
 4.5 GENERAL PRINCIPLES OF GEOTECHNICAL DESIGN FOR SERVICEABILITY ... 29
 4.6 DESIGN REQUIREMENTS FOR SERVICEABILITY .. 29

SECTION 5 STRUCTURAL DESIGN
 5.1 SCOPE OF SECTION .. 32
 5.2 GENERAL PRINCIPLES OF STRUCTURAL STRENGTH DESIGN 32
 5.3 CONCRETE AND GROUT PILES ... 33
 5.4 STEEL PILES ... 36
 5.5 COMPOSITE STEEL AND CONCRETE PILES ... 36
 5.6 TIMBER PILES .. 37

SECTION 6 DURABILITY DESIGN
 6.1 GENERAL ... 38
 6.2 GENERAL PRINCIPLES OF DURABILITY DESIGN 38
 6.3 ACID SULFATE SOILS ... 38
 6.4 DESIGN FOR DURABILITY OF CONCRETE PILES 39
 6.5 DESIGN FOR DURABILITY OF STEEL PILES .. 42
 6.6 DESIGN FOR DURABILITY OF TIMBER PILES ... 45

SECTION 7 MATERIALS AND CONSTRUCTION REQUIREMENTS
 7.1 GENERAL .. 47
 7.2 TOLERANCES AND DEFECTS ... 47
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3</td>
<td>DISPLACEMENT PILES—PREFORMED</td>
<td>48</td>
</tr>
<tr>
<td>7.4</td>
<td>DISPLACEMENT PILES—DRIVEN CAST IN PLACE</td>
<td>52</td>
</tr>
<tr>
<td>7.5</td>
<td>DISPLACEMENT PILES—SCREWED CAST IN PLACE</td>
<td>53</td>
</tr>
<tr>
<td>7.6</td>
<td>NON-DISPLACEMENT PILES</td>
<td>54</td>
</tr>
<tr>
<td>7.7</td>
<td>RECORDS OF DATA</td>
<td>57</td>
</tr>
<tr>
<td>SECTION 8</td>
<td>TESTING</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>SCOPE</td>
<td>60</td>
</tr>
<tr>
<td>8.2</td>
<td>GENERAL REQUIREMENTS</td>
<td>60</td>
</tr>
<tr>
<td>8.3</td>
<td>PILE LOAD TESTING</td>
<td>62</td>
</tr>
<tr>
<td>8.4</td>
<td>STATIC LOAD TESTING</td>
<td>65</td>
</tr>
<tr>
<td>8.5</td>
<td>HIGH-STRAIN DYNAMIC PILE TESTING</td>
<td>67</td>
</tr>
<tr>
<td>8.6</td>
<td>BI-DIRECTIONAL LOAD TESTING</td>
<td>68</td>
</tr>
<tr>
<td>8.7</td>
<td>RAPID LOAD TESTING</td>
<td>69</td>
</tr>
<tr>
<td>8.8</td>
<td>INTEGRITY TESTING</td>
<td>69</td>
</tr>
<tr>
<td>APPENDICES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>STATIC LOAD TEST</td>
<td>71</td>
</tr>
<tr>
<td>B</td>
<td>HIGH-STRAIN DYNAMIC PILE TESTING</td>
<td>78</td>
</tr>
<tr>
<td>C</td>
<td>RAPID PILE TESTING</td>
<td>81</td>
</tr>
<tr>
<td>D</td>
<td>INTEGRITY TESTING</td>
<td>85</td>
</tr>
<tr>
<td>E</td>
<td>LIMIT STATES—SYMBOLS AND DEFINITIONS</td>
<td>89</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td></td>
<td>90</td>
</tr>
</tbody>
</table>
FOREWORD

Decisions in pile design are based on design formulae, empirical and practical experience, and the accumulated records of a large number of applications of proprietary systems (both successful and otherwise). As such, there is a great need for flexibility, experience, engineering judgement and commonsense in designing and constructing a piled footing system. In a real sense, these requirements are in conflict with the need to make unqualified mandatory statements and, as a result, many of the stipulations of this Standard are short and simple when, in other cases, extensive arrays of multiple choices are provided. Where applicable, explanatory notes are added to some clauses in this Standard and additional commentary is provided.
SECTION 1 SCOPE AND GENERAL

1.1 SCOPE
This Standard sets out minimum requirements for the design, construction and testing of piled footings for civil engineering and building structures on land or immediate inshore locations. It does not extend to offshore (deepwater) construction.

NOTES:
1 AS 5100 series should be considered for the design of footings for road bridges.
2 Where the strength or serviceability of an existing structure is to be evaluated, the general principles of this Standard should be applied. The actual properties of the materials in the structure should be used.
3 The durability requirements are appropriate for structures with design life within \(\pm 20\% \) of the target design life.

1.2 NORMATIVE REFERENCES
The normative documents referenced in this Standard are the following:

NOTE: Documents referenced for informative purposes are listed in the Bibliography.

AS
1012 Methods of testing concrete (all Parts)
1163 Structural steel hollow sections
1170 Structural design actions
1170.4 Part 4: Earthquake actions in Australia
1289 Methods of testing soils for engineering purposes
1289.6.3.1 Part 6.3.1: Soil strength and consolidation tests—Determination of the penetration resistance of a soil—Standard penetration test (SPT)
1289.6.5.1 Part 6.5.1: Soil strength and consolidation tests—Determination of the static cone penetration resistance of a soil—Field test using a mechanical and electrical cone or friction-cone penetrometer
1379 Specification and supply of concrete
1450 Steel tubes for mechanical purposes
1554 Structural steel welding
1554.1 Part 1: Welding of steel structures
1579 Arc-welded steel pipes and fittings for water and waste-water
1604 Specification for preservative treatment
1604.1 Part 1: Sawn and round timber
1720 Timber structures
1720.1 Part 1: Design methods
1726 Geotechnical site investigations