The Effects of Hydrogen for Establishing a Minimum Pressurization Temperature (MPT) for Heavy Wall Steel Reactor Vessels

API TECHNICAL REPORT 934-F, PART 4
FIRST EDITION, NOVEMBER 2018
The Effects of Hydrogen for Establishing a Minimum Pressurization Temperature (MPT) for Heavy Wall Steel Reactor Vessels

Prepared under contract for API by:

Dr. Richard P. Gangloff
Emeritus Ferman W. Perry Professor of Materials Science and Engineering
Department of Materials Science and Engineering
School of Engineering and Applied Science
University of Virginia, Charlottesville, Virginia

Ted L. Anderson, Ph.D., P.E.
TL Anderson Consulting
Longmont, Colorado
Special Notes

API publications necessarily address problems of a general nature. With respect to particular circumstances, local, state, and federal laws and regulations should be reviewed.

Neither API nor any of API's employees, subcontractors, consultants, committees, or other assignees make any warranty or representation, either express or implied, with respect to the accuracy, completeness, or usefulness of the information contained herein, or assume any liability or responsibility for any use, or the results of such use, of any information or process disclosed in this publication. Neither API nor any of API's employees, subcontractors, consultants, or other assignees represent that use of this publication would not infringe upon privately owned rights.

Classified areas may vary depending on the location, conditions, equipment, and substances involved in any given situation. Users of this technical report should consult with the appropriate authorities having jurisdiction.

API publications may be used by anyone desiring to do so. Every effort has been made by the Institute to assure the accuracy and reliability of the data contained in them; however, the Institute makes no representation, warranty, or guarantee in connection with this publication and hereby expressly disclaims any liability or responsibility for loss or damage resulting from its use or for the violation of any authorities having jurisdiction with which this publication may conflict.

API publications are published to facilitate the broad availability of proven, sound engineering and operating practices. These publications are not intended to obviate the need for applying sound engineering judgment regarding when and where these publications should be utilized. The formulation and publication of API publications is not intended in any way to inhibit anyone from using any other practices.

Any manufacturer marking equipment or materials in conformance with the marking requirements of an API standard is solely responsible for complying with all the applicable requirements of that standard. API does not represent, warrant, or guarantee that such products do in fact conform to the applicable API standard.

Users of this technical report should not rely exclusively on the information contained in this document. Sound business, scientific, engineering, and safety judgment should be used in employing the information contained herein.

Where applicable, authorities having jurisdiction should be consulted.

API is not undertaking to meet the duties of employers, manufacturers, or suppliers to warn and properly train and equip their employees, and others exposed, concerning health and safety risks and precautions, nor undertaking their obligations to comply with authorities having jurisdiction.
Foreword

Nothing contained in any API publication is to be construed as granting any right, by implication or otherwise, for the manufacture, sale, or use of any method, apparatus, or product covered by letters patent. Neither should anything contained in the publication be construed as insuring anyone against liability for infringement of letters patent.

Questions concerning the interpretation of the content of this publication or comments and questions concerning the procedures under which this publication was developed should be directed in writing to the Director of Standards, American Petroleum Institute, 1220 L Street, NW, Washington, DC 20005. Requests for permission to reproduce or translate all or any part of the material published herein should also be addressed to the director.

Generally, API standards are reviewed and revised, reaffirmed, or withdrawn at least every five years. A one-time extension of up to two years may be added to this review cycle. Status of the publication can be ascertained from the API Standards Department, telephone (202) 682-8000. A catalog of API publications and materials is published annually by API, 1220 L Street, NW, Washington, DC 20005.

Suggested revisions are invited and should be submitted to the Standards Department, API, 1220 L Street, NW, Washington, DC 20005, standards@api.org.
Contents

1. Executive Summary ... 1
2. Introduction ... 2
3. Critical Review of Experimental Data for Hydrogen Effects On 2 ¼ Cr-1 Mo Steel ... 3
 3.1 Background .. 3
 3.2 Subcritical Hydrogen Cracking Threshold Stress Intensity (KIH) ... 16
 3.3 Resistance to Fast Fracture in Hydrogen Charged Steels (KIC-H) ... 28
 3.4 Internal Hydrogen Assisted Cracking of Modern 2¼Cr-1Mo-0.25V ... 58
 3.5 Hydrogen Environment Assisted Cracking of Cr-Mo and Cr-Mo-V Steels ... 61
 3.6 References ... 63
4. Technical Basis for an MPT Determination .. 68
 4.1 Critical Temperature for Subcritical Hydrogen Cracking ... 68
 4.2 Pressure-Temperature Curve for Fast Fracture Avoidance ... 79
 4.3 References ... 84
5. Proposed Architecture for a Fitness-for-Service Procedure 86
 5.1 FATT Estimation .. 86
 5.2 Critical Temperature for Stable Hydrogen Cracking (TIH) .. 88
 5.3 Fast Fracture Avoidance .. 97
6. Conclusions .. 97

Figures

1. Schematic diagram of the effect of loading format on the IHAC and HEAC of low-alloy Cr-Mo steels, noting the material properties relevant to fracture mechanics assessment of minimum pressurization temperature and fitness-for-service ... 4
2. The ultimate tensile strength dependence of the threshold stress intensity for the onset of IHAC under slow-rising CMOD loading (KIH) compared to the arrest of IHAC under fixed-CMOD (KTH under decreasing K) loading for H-precharged 2¼Cr-1Mo steel stressed at 25 °C ... 6
3. Historical record of improving 2¼Cr-1Mo purity .. 13
4. Relationship between FATT\textsubscript{Thermal} and J for Cr-Mo steels subjected to long-term in-service exposure showing the occurrence of temper embrittlement ... 14
5. Effect of loading format on IHAC for low-J base plate of 2.48%Cr-1.10%Mo (J = 40, FATT\textsubscript{Thermal} after step cool = −90°C, \(\sigma_{YS} = 447\) MPa), precharged with a total-H concentration of 5.7 wppm, then stressed in moist air under slow-rising CMOD (dK/dt = 0.007 MPa√m/s) at 25 °C .. 19
6. Effect of loading rate on KIH for the low-J base plate in Figure 5, plus data for low XB weld metal (step cooled FATT\textsubscript{Thermal} = −57°C) and moderate XB weld metal (step cooled FATT\textsubscript{Thermal} = 32°C) with the indicated-predissolved total H concentration .. 20
7. Effect of loading rate on the da/dt during rising CMOD, at K midway between KIH and the highest K in the loading, for the base plate, two weld metals, and H concentrations shown in Figure 6 .. 21
8. Effect of total-dissolved H concentration, produced by elevated temperature exposure in high-pressure H\textsubscript{2} on the elastic KIH for high-purity (low J and XB) weld metal and base plate of 2¼Cr-1Mo stressed in moist air at a single-slow-rising CMOD and 23 °C .. 22
Contents

9 Effect of total-dissolved H concentration, produced by elevated temperature exposure in high-pressure H₂, on the elastic K₁IH for moderate purity (mid J and X₈) weld metal (step cooled FATTThermal = 28 °C and 45 °C) and base plate (step cooled FATTThermal = 6 °C) of 2¼Cr-1Mo stressed in moist air at a single-slow-rising CMOD rate and 23 °C .. 23

10 Effect of total-dissolved H concentration, produced by elevated temperature exposure in high-pressure H₂, on the elastic K₁IH for low-purity (high J and X₈) weld metals and base plates of 2¼Cr-1Mo stressed in moist air at a slow-rising CMOD (0.005 MPa\(\sqrt{m}/s\) to 0.135 MPa\(\sqrt{m}/s\)) and 23 °C .. 24

11 Effect of temperature on the elastic K₁IH for H₂-precharged (initial value of CH_Total = 5 wppm) moderate-purity weld metal and base plate of 2¼Cr-1Mo stressed in moist air at a slow-rising CMOD (0.007 MPa\(\sqrt{m}/s\)) ... 26

12 Effect of temperature on the rising-CMOD threshold, K₁IH, for standard H₂-precharged specimens of 2¼Cr-1Mo weld metal from Figure 11, as well as for the slotted compact tension specimen with three levels of total H concentration, electrochemically fixed on the slot surface; CH_Total = 3.0 wppm (0.5 M H₂SO₄ + 10⁻³M K₂SO₄ at -5.0 mA/cm²), CH_Total = 1.8 wppm (0.1 M NaOH at -15 mA/cm²), and CH_Total = 1.1 wppm (0.5 M H₂SO₄ at -10 mA/cm²) ... 27

13 Effect of temperature on the rising-CMOD threshold, K₁IH, for 90-mm-thick compact tension specimens of H₂-precharged specimens of moderate FATTThermal 2¼Cr-1Mo weld metal and base plate ... 28

14 Left: Effect of predissolved H concentration on the difference in the FATT, with and without H, for 2¼Cr-1Mo with and without temper embrittlement from step cooling. Right: Effect of predissolved H and temper embrittlement from step cooling on the Charpy FATT for several compositions of Cr-Mo steel ... 30

15 Effect of H concentration on the increase in FATT, per 1.0 wppm of predissolved H, for base metal, weld metal, and the HAZ 2¼Cr-1Mo steel ... 31

16 Hydrogen distribution among lattice (L) and trap sites [(a): carbide (C) interfaces, lath interfaces, grain boundaries (GB), and dislocations (D), and (b): lath interfaces (Lath)] during cooling of H-precharged 2¼Cr-1Mo from the charging temperature .. 32

17 Master curve correlation of H-free fracture toughness, K₁C, (open diamonds) for Cr-Mo steels of varying FATT and without .. 36

18 The effect of loading temperature on the critical stress intensity for the onset of crack propagation in a Cr-Mo steel .. 38

19 The effect of loading temperature on the critical stress intensity for the onset of crack propagation in a Cr-Mo steel .. 39

20 The effect of H on crack growth resistance under rising CMOD loading at 100 °C .. 40

21 The predicted dependence of the H-induced shift in transition temperature as a function of steel FATT, in the temper embrittled condition, and CH_Total ... 42

22 The relationship between H-free FATTThermal and the FATTThermal after H precharging to a CH_Total of 2 wppm for various heats of 2¼Cr-1Mo steel ... 43

23 The predicted operating pressure-temperature profile necessary to avoid H cracking during thick wall reactor startup .. 44

24 The effect of loading, given by K\text{Elastic}, on the magnitude of the plastic part of K calculated from the J-integral based on unloading compliance for 25.4-mm-thick CT specimens of 2¼Cr-1Mo with crack lengths and load levels typical of IHAC experiments .. 47

25 The effect of loading temperature on the occurrence (y-axis value near +1.0) or absence (y-axis value near −1.0) of unstable H cracking in 2¼Cr-1Mo base plate of varying temper embrittled FATTThermal between −90 °C and +130 °C, and with an average-precharged CH_Total of between 1.1 wppm and 5.5 wppm, y-axis values ≈ −1.8 indicate those experiments where the applied K was less than 60 MPa\(\sqrt{m}\) ... 50
Contents

26 The effect of (T-FATT\textsubscript{Thermal}) on the occurrence (y-axis value \(\approx +1.0\)) or absence (y-axis value \(\approx -1.0\)) of unstable-H cracking in 2\%Cr-1Mo base plate of varying temper embrittled FATT\textsubscript{Thermal} between \(-90\,^\circ C\) and \(+130\,^\circ C\), and with an average precharged C\textsubscript{H-Tot} of between 1.1 wppm and 5.9 wppm. y-axis values \(\approx -1.8\) indicate those experiments where the applied K was less than 60 MPa\(\sqrt{m}\) ... 51

27 The effect of loading temperature on the occurrence (y-axis value \(\approx +1.0\)) or absence (y-axis value \(\approx -1.0\)) of unstable-H cracking in 2\%Cr-1Mo weld metal of varying temper embrittled FATT\textsubscript{Thermal} between \(-57\,^\circ C\) and \(+88\,^\circ C\), and with an average-precharged C\textsubscript{H-Tot} of between 1.9 wppm and 5.9 wppm. y-axis values \(\approx -1.8\) indicate those experiments where the applied K was less than 60 MPa\(\sqrt{m}\) ... 55

28 The effect of (T - FATT\textsubscript{Thermal}) on the occurrence (y-axis value \(\approx +1.0\)) or absence (y-axis value \(\approx -1.0\)) of unstable-H cracking in 2\%Cr-1Mo weld metal of varying temper embrittled FATT\textsubscript{Thermal} between \(-57\,^\circ C\) and \(+88\,^\circ C\), and with an average-precharged C\textsubscript{H-Tot} of between 1.9 wppm and 5.9 wppm. y-axis values \(\approx -1.8\) indicate those experiments where the applied K was less than 60 MPa\(\sqrt{m}\) ... 56

29 The effect of loading temperature on the occurrence (y-axis value \(\approx +1.0\)) or absence (y-axis value \(\approx -1.0\)) of unstable-H cracking in 2\%Cr-1Mo base plate and weld metal of varying temper embrittled FATT\textsubscript{Thermal} between \(-90\,^\circ C\) and \(+130\,^\circ C\), and with an average-precharged C\textsubscript{H-Tot} of between 1.1 wppm and 5.9 wppm. y-axis values \(\approx -1.8\) indicate those experiments where the applied K was less than 60 MPa\(\sqrt{m}\) ... 57

30 The effect of (T - FATT\textsubscript{Thermal}) on the occurrence (y-axis value \(\approx +1.0\)) or absence (y-axis value \(\approx -1.0\)) of unstable-H cracking in 2\%Cr-1Mo base plate and weld metal of varying temper embrittled FATT\textsubscript{Thermal} between \(-90\,^\circ C\) and \(+130\,^\circ C\), and with an average-precharged C\textsubscript{H-Tot} of between 1.1 wppm and 5.9 wppm. y-axis values \(\approx -1.8\) indicate those experiments where the applied K was less than 60 MPa\(\sqrt{m}\) ... 58

31 The loading rate dependence of K\textsubscript{IH} for IHAC in 2\%Cr-1Mo-0.25V base metal (BM, ▲) and weld metal (WM, ▲) at 25 \(^\circ C\) compared to values for 2\%Cr-1Mo BM and WM at 25 \(^\circ C\) (Figure 6) using the conservative slow-rising CMOD test method used in the Phase I JIP 59

32 The temperature dependence of K\textsubscript{IH} for IHAC in 2\%Cr-1Mo base metal and weld metal from Figure 11, compared to K\textsubscript{IH} for 2\%Cr-1Mo-0.25V BM and WM for slow rising dK/dt that generally increased with increasing temperature ... 60

33 The C\textsubscript{H-Tot} dependence of K\textsubscript{IH} for IHAC in modern low J-factor 2\%Cr-1Mo BM and WM, replotted from Figure 8 and compared to that for 2\%Cr-1Mo-0.25V weld and base metals. 61

34 The H\textsubscript{2} pressure dependence of the threshold stress intensity for HEAC of alloy and C-Mn steels stressed at 25 \(^\circ C\) ... 62

35 H\textsubscript{2} pressure dependence of K\textsubscript{IH} for slow-rising K stressing of as-received and H-precharged 2\%Cr-1Mo-0.25V base metal and weld metal in pure H\textsubscript{2} 63

36 Correlation between measured K\textsubscript{IH} and the 3-D finite element model-predicted concentration of H, trapped along the crack path with an E\textsubscript{B} of 38 kJ/mol at a reference distance (\(\delta_{9\mu m}\)) of 9 \(\mu m\) ahead of the tip for moderate-purity laboratory step-cooled 2\%Cr-1Mo base plate and weld metal . 70

37 The effect of crack tip diffusible H concentration (C\textsubscript{H-Diff 470 \(\mu m\)) localized at the reference point of 9\(\mu m\) ahead of the crack tip, on the predicted critical temperature for elimination of IHAC in a cracked section fabricated from moderate-FATT\textsubscript{Thermal} 2\%Cr-1Mo steel (Database B, Section 3.1.5), as a function of total-precharged H concentration and based on the laboratory value of C\textsubscript{T-o-CRIT} = 117,000 wppm taken from Figure 36 and enhanced to account for the increase in crack tip reference location from 9 \(\mu m\) to 470 \(\mu m\) ... 71

38 K\textsubscript{IH} master curve for Low-FATT (Database C, FATT\textsubscript{Thermal} < \(-30\,^\circ C\)) 2\%Cr-1Mo base plate and weld metal .. 74
Contents

39 \(K_{IH} \) master curve for Medium-FATT (Database B, \(-30^\circ C < FATT_{Thermal} < 50^\circ C\) 2\%Cr-1Mo base plate and weld metal ... 75
40 \(K_{IH} \) master curve for High-FATT (Database A, FATT\textsubscript{Thermal} > 50^\circ C) 2\%Cr-1Mo base plate and weld metal .. 75
41 Through-wall variation of hydrogen content at steady-state operating conditions (blue curve) and during a shutdown transient (red curve) .. 76
42 Using the \(\Phi \) parameter to ensure similitude between a laboratory specimen and a reactor with a surface crack .. 78
43 Critical temperature versus bulk hydrogen content curves computed from Equation (17) 79
44 Fracture toughness data for hydrogen-charged 2\%Cr-1Mo base metal, compared with the master curve toughness predictions for uncharged steel .. 81
45 Fracture toughness data for hydrogen-charged 2\%Cr-1Mo weld metal, compared with the master curve toughness predictions for uncharged material .. 82
46 Data from Figure 44 after applying a 50^\circ C temperature shift to account for hydrogen effects ... 82
47 Data from Figure 45 after applying a 50^\circ C temperature shift to account for hydrogen effects ... 83
48 Level 1 pressure-temperature curve for avoiding H-enhanced fast fracture 84
49 Minimum pressurization temperature (MPT) defined as the lower of the subcritical IHAC and the unstable IHAC fracture criteria ... 86
50 Critical temperature (\(T_{IH} \)) curves for Level 1 and Level 2 MPT assessment 88
51 Through-wall hydrogen concentration profile, illustrating the Level 1 and Level 2 definitions of the maximum-bulk hydrogen concentration for determining \(T_{IH} \) from Figure 50 89
52 Determining the maximum crack depth for arrest of IHAC .. 90
53 Through-wall variation of diffusible hydrogen remote from the crack 91
54 Through-wall variation of total hydrogen remote from the crack .. 92
55 Finite element mesh of a 0.2123 in.-deep surface crack in a reactor 92
56 Finite element mesh of a 0.9315-in.-deep surface crack in a reactor 93
57 Variation in \(A_1 \) during a shutdown/startup transient .. 93
58 Level 3 assessment of \(T_{IH} \), given a 0.2123-in.-deep crack ... 94
59 Level 3 assessment of \(T_{IH} \), given a 0.9315-in.-deep crack ... 95
60 Comparison of Level 1, 2, and 3 \(T_{IH} \) assessments for low-FATT 2\%Cr-1Mo steel 95
61 Comparison of Level 1, 2, and 3 \(T_{IH} \) assessments for moderate-FATT 2\%Cr-1Mo steel 96
62 Comparison of Level 1, 2, and 3 \(T_{IH} \) assessments for high-FATT 2\%Cr-1Mo steel 96

Tables
1 Summary of \(K_{IC-H} \) Results for 2\%Cr-1Mo Base Plate .. 48
2 Summary of \(K_{IC-H} \) Results for 2\%Cr-1Mo Weld Metal .. 53
3 Material groupings and FATT\textsubscript{Thermal} for Option A ... 87
4 Material groupings and FATT\textsubscript{Thermal} for Option B .. 87
5 Material groupings and FATT\textsubscript{thermal} for Option C .. 87
The Effects of Hydrogen for Establishing a Minimum Pressurization Temperature (MPT) for Heavy Wall Steel Reactor Vessels

1 Executive Summary

Hydrogen, dissolved in the thick wall of a steel pressure vessel during steady-state operation in elevated temperature high-pressure H2, can cause both slow-subcritical crack advance, as well as unstable catastrophic fracture during shutdown and startup. This behavior is defined in Section 2. It follows that modern fracture mechanics assessments of the minimum pressurization temperature (MPT) and fitness for service (FFS) must include the deleterious effect of H on both subcritical and unstable internal hydrogen-assisted cracking (IHAC). Two approaches are in draft stage to develop standard procedures that address this need: an API 934-F recommended practice and a WRC Bulletin 562 basis for ASME/API 579.

The objective of this technical report is to establish the technical basis necessary to enable and validate these best practices for quantifying the effects of hydrogen on (a) the MPT, and (b) FFS of a thick wall hydrosprocessing reactor. The approach entails two parts. Part 1 emphasizes critical assessment and collection of two primary H-cracking properties: the threshold stress intensity for the onset of subcritical H cracking under slow-rising stress intensity (KIH), and the critical stress intensity for the onset of unstable catastrophic cleavage-like crack growth promoted by H (KIC-H). Part 2 focuses on the methods to use these data to quantitatively to predict an MPT that precludes H cracking during shutdown and startup. The sum of these two parts—validated-extensive IHAC data and science-based engineering analysis—establishes a single technical basis that can be consistently incorporated in API 934-F and API/ASME 579 recommended practices to control H cracking.

Section 3 documents extensive KIH and KIC-H data that conservatively characterize IHAC in 2¼Cr-1Mo weld metal and base plate. The effects of critical variables are documented; including the degree of temper embrittlement in terms of the FATT after thermal exposure (FATTthermal), total H concentration, and stressing temperature. KIH data are aggregated for three classes of steel purity: Database A (low purity/high FATT) with FATTthermal > 50 °C; Database B (intermediate purity/intermediate FATT) with −30 °C < FATTthermal < 50 °C; and Database C (high purity/low FATT) with FATTthermal < −30 °C. These three steel composition categories were defined to both recognize the critical interaction of temper embrittlement with hydrogen cracking, and to optimize the combination of existing multiple IHAC data sets from different laboratories. [Alternatively, the user can combine databases B and C to quantify IHAC in 2¼Cr-1Mo steels fabricated before and after (Database A) impurity-chemistry control.]

Subcritical H cracking (Section 3.2) is eliminated below a critical-dissolved H concentration and above a critical temperature, which are related through H-trapping theory to a single-critical parameter. The beneficial effect of increasing temperature is affirmed by fracture mechanics experiments with several specimen geometries, and provides the basis for MPT definition to eliminate subcritical H cracking. Fracture mechanics experiments (Section 3.3) clearly establish that dissolved H can reduce the unstable-fracture toughness of 2¼Cr-1Mo weld metal and base plate, from KIC to KIC-H, consistent with the deleterious effect of H on Charpy impact energy and Charpy FATT. However, previous studies have not correctly eliminated those data that were improperly interpreted to yield a false KIC-H (e.g. due to the occurrence of innocuous pop-in events).

Validated KIC-H experiments covering a range of H-free FATT values establish that the occurrence of true-unstable crack growth correlates with (T-FATTthermal), essentially independent of dissolved H concentration and showing a distribution of behavior for a given temperature. H-promoted unstable cracking is eliminated; that is, KIC-H approaches the H-free KIC above a critical temperature equal to (Charpy FATTthermal + 66 °C) for base plate and above the Charpy impact FATTthermal for weld metal. (H-promoted unstable cracking was never observed at absolute temperatures above 86 °C for base plate and