Québec Construction Code, Chapter V – Electricity

Canadian Electrical Code, Part I, with Québec Amendments

2018
Canadian Standards Association (operating as “CSA Group”) develops standards through a consensus standards development process approved by the Standards Council of Canada. This process brings together volunteers representing varied viewpoints and interests to achieve consensus and develop a standard. Although CSA Group administers the process and establishes rules to promote fairness in achieving consensus, it does not independently test, evaluate, or verify the content of standards.

Disclaimer and exclusion of liability
This document is provided without any representations, warranties, or conditions of any kind, express or implied, including, without limitation, implied warranties or conditions concerning this document’s fitness for a particular purpose or use, its merchantability, or its non-infringement of any third party’s intellectual property rights. CSA Group does not warrant the accuracy, completeness, or currency of any of the information published in this document. CSA Group makes no representations or warranties regarding this document’s compliance with any applicable statute, rule, or regulation.

IN NO EVENT SHALL CSA GROUP, ITS VOLUNTEERS, MEMBERS, SUBSIDIARIES, OR AFFILIATED COMPANIES, OR THEIR EMPLOYEES, DIRECTORS, OR OFFICERS, BE LIABLE FOR ANY DIRECT, INDIRECT, OR INCIDENTAL DAMAGES, INJURY, LOSS, COSTS, OR EXPENSES, HOWSOEVER CAUSED, INCLUDING BUT NOT LIMITED TO SPECIAL OR CONSEQUENTIAL DAMAGES, LOST REVENUE, BUSINESS INTERRUPTION, LOST OR DAMAGED DATA, OR ANY OTHER COMMERCIAL OR ECONOMIC LOSS, WHETHER BASED IN CONTRACT, TORT (INCLUDING NEGLIGENCE), OR ANY OTHER THEORY OF LIABILITY, ARISING OUT OF OR RESULTING FROM ACCESS TO OR POSSESSION OR USE OF THIS DOCUMENT, EVEN IF CSA GROUP HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, INJURY, LOSS, COSTS, OR EXPENSES.

In publishing and making this document available, CSA Group is not undertaking to render professional or other services for or on behalf of any person or entity or to perform any duty owed by any person or entity to another person or entity. The information in this document is directed to those who have the appropriate degree of experience to use and apply its contents, and CSA Group accepts no responsibility whatsoever arising in any way from any and all use of or reliance on the information contained in this document.

CSA Group is a private not-for-profit company that publishes voluntary standards and related documents. CSA Group has no power, nor does it undertake, to enforce compliance with the contents of the standards or other documents it publishes.

Intellectual property rights and ownership
As between CSA Group and the users of this document (whether it be in printed or electronic form), CSA Group is the owner, or the authorized licensee, of all works contained herein that are protected by copyright, all trade-marks (except as otherwise noted to the contrary), and all inventions and trade secrets that may be contained in this document, whether or not such inventions and trade secrets are protected by patents and applications for patents. Without limitation, the unauthorized use, modification, copying, or disclosure of this document may violate laws that protect CSA Group’s and/or others’ intellectual property and may give rise to a right in CSA Group and/or others to seek legal redress for such use, modification, copying, or disclosure. To the extent permitted by licence or by law, CSA Group reserves all intellectual property rights in this document.

Patent rights
Attention is drawn to the possibility that some of the elements of this standard may be the subject of patent rights. CSA Group shall not be held responsible for identifying any or all such patent rights. Users of this standard are expressly advised that determination of the validity of any such patent rights is entirely their own responsibility.

Authorized use of this document
This document is being provided by CSA Group for informational and non-commercial use only. The user of this document is authorized to do only the following:

If this document is in electronic form:
• load this document onto a computer for the sole purpose of reviewing it;
• search and browse this document; and
• print this document if it is in PDF format.

Limited copies of this document in print or paper form may be distributed only to persons who are authorized by CSA Group to have such copies, and only if this Legal Notice appears on each such copy.

In addition, users may not and may not permit others to
• alter this document in any way or remove this Legal Notice from the attached standard;
• sell this document without authorization from CSA Group; or
• make an electronic copy of this document.

If you do not agree with any of the terms and conditions contained in this Legal Notice, you may not load or use this document or make any copies of the contents hereof, and if you do make such copies, you are required to destroy them immediately. Use of this document constitutes your acceptance of the terms and conditions of this Legal Notice.
Standards Update Service

C22.10-18
August 2018

Title: Chapter V Electricity of the Québec Construction Code

Automatic notifications about any updates to this publication are available online.

To register for e-mail notification about any updates to this publication, go to shop.csa.ca and click on CSA Update Service.

The List ID for this document is 2425164. Please enter this List ID in the appropriate field to sign up for updates to this publication.
C22.1-15
Canadian Electrical Code, Part I

Safety Standard for Electrical Installations
(Twenty-third edition)

® A trademark of the Canadian Standards Association, operating as “CSA Group”

- The Canadian Electrical Code, Part I, is a voluntary code for adoption and enforcement by regulatory authorities.
- The Canadian Electrical Code, Part I, meets the fundamental safety principles of International Standard IEC 60364-1, Low-voltage electrical installations.
- Consult with local authorities regarding regulations that adopt and/or amend this Code.

Published in August 2018 by CSA Group
A not-for-profit private sector organization
178 Rexdale Blvd., Toronto, Ontario, Canada M9W 1R3
1-800-463-6727 • 416-747-4044

Visit our Online Store at shop.csa.ca
CSA Group prints its publications on recycled stock, which contains 30% post-consumer fiber and is Processed Chlorine Free (PCF).

ISBN 978-1-4883-1341-7

Technical Editor: Tim Pope

All rights reserved. No part of this publication may be reproduced in any form whatsoever without the prior permission of the publisher.
Contents

Committee on Canadian Electrical Code, Part I x
Regulatory Authority Committee xii
Executive Committee xiii
National Building Code/Canadian Electrical Code Liaison Committee xiii
Section Subcommittees xiii
Preface xxvii
The history and operation of the Canadian Electrical Code, Part I xxviii
Metric units xxix
Reference publications xxxi

Section 0 — Object, scope, and definitions 1
Object 1
Scope 1
Definitions 1

Section 2 — General Rules 12
Administrative 12
Technical 13
 General 13
 Protection of persons and property 16
 Maintenance and operation 16
 Enclosures 17

Section 4 — Conductors 19

Section 6 — Services and service equipment 26
Scope 26
General 26
Control and protective equipment 27
Wiring methods 29
Metering equipment 30

Section 8 — Circuit loading and demand factors 32
Scope 32
General 32
Services and feeders 34
Branch circuits 37
Automobile heater receptacles 37

Section 10 — Grounding and bonding 39
Scope and object 39
System and circuit grounding 39
Grounding connections for systems and circuits 40
Conductor enclosure bonding 41
Equipment bonding 42
Bonding methods 44
Grounding electrodes 47
Grounding and bonding conductors 48
Grounding and bonding conductor connections 50
Lightning arresters 51
Installation of neutral grounding devices 52

Section 12 — Wiring methods 54
Scope 54
General requirements 54
Conductors 55
 General 55
 Open wiring 58
Section 20 — Flammable liquid and gasoline dispensing, service stations, garages, bulk storage plants, finishing processes, and aircraft hangars

115

Gasoline dispensing and service stations 115
Propane dispensing, container filling, and storage 116
Compressed natural gas refuelling stations, compressors, and storage facilities 117
Commercial repair garages 118
Bulk storage plants 119
Finishing processes 120
Aircraft hangars 123

Section 22 — Locations in which corrosive liquids, vapours, or excessive moisture are likely to be present

126

General 126
Equipment 126
Wiring 127
Drainage, sealing, and exclusion of moisture and corrosive vapour 128
Circuit control 128
Materials 128
Bonding 128
Sewage lift and treatment plants 129

Section 24 — Patient care areas

131

Patient care areas 132
Isolated systems 134
Essential electrical systems 135

Section 26 — Installation of electrical equipment

137

General 137
Isolating switches 138
Circuit breakers 138
Fuses and fusible equipment 138
Capacitors 138
Transformers 140
Fences 144
Electrical equipment vaults 145
Cellulose nitrate film storage 145
Panelboards 146
Lightning arresters 146
Low-voltage surge protective devices 147
Storage batteries 147
Arc lamps 148
Resistance devices 148
Receptacles 149
Receptacles for residential occupancies 150
Branch circuits for residential occupancies 152
Electric heating and cooking appliances 153
Heating equipment 154
Pipe organs 155
Submersible pumps 155
Data processing 156

Section 28 — Motors and generators

157

Scope 157
General 157
Wiring methods and conductors 158
Overcurrent protection 159
Overload and overheating protection 161
Undervoltage protection 162
Control 162
Disconnecting means 163
Hermetic refrigerant motor-compressors 165
Multi-winding and part-winding-start motors 166
Protection and control of generators 167

Section 30 — Installation of lighting equipment 168
General 168
Location of lighting equipment 169
Installation of lighting equipment 169
Wiring of lighting equipment 171
Luminaires in buildings of residential occupancy 172
Lampholders 172
Electric-discharge lighting systems operating at 1000 V or less 173
Electric-discharge lighting systems operating at more than 1000 V 174
 Recessed luminaires 175
 Permanent outdoor floodlighting installations 176
 Exposed wiring for permanent outdoor lighting 179
Extra-low-voltage lighting systems 180

Section 32 — Fire alarm systems, fire pumps, and carbon monoxide alarms 181
Fire alarm systems 181
Fire pumps 182

Section 34 — Signs and outline lighting 184
General requirements 184
Enclosures 185
Neon supplies 185
Wiring methods 186

Section 36 — High-voltage installations 188
General 188
Wiring methods 189
Control and protective equipment 191
Grounding and bonding 192

Section 38 — Elevators, dumbwaiters, material lifts, escalators, moving walks, lifts for persons with physical disabilities, and similar equipment 196
Elevators 197
Escalators 199
Lifts for persons with physical disabilities 199

Section 40 — Electric cranes and hoists 204

Section 42 — Electric welders 206
General 206
Transformer arc welders 206
Motor-generator arc welders 207
Resistance welders 207

Section 44 — Theatre installations 209
Scope 209
General 209
Fixed stage switchboards 209
Portable switchboards on stage 210
Fixed stage equipment 210
Portable stage equipment 212
Section 46 — Emergency power supply, unit equipment, exit signs, and life safety systems

General 213
- Emergency power supply 214
- Unit equipment 215
- Exit signs 215

Section 48 Deleted

Section 50 Deleted

Section 52 — Diagnostic imaging installations 217

Section 54 — Community antenna distribution and radio and television installations 219
- Community antenna distribution 219
- Protection 220
- Grounding 221
- Conductors within buildings 221
- Equipment 222
- Conductors outside of buildings 222
- Underground circuits 223
- Receiving equipment and amateur transmitting equipment 224
- Grounding for receiving equipment and amateur transmitting equipment 224
- Transmitting stations 225

Section 56 — Optical fiber cables 226
- Scope 226
- General 226
- Installation methods 226

Section 58 — Passenger ropeways and similar equipment 228
- Scope 228
- General 228
- General requirements 228
- Conductors 229
- Wiring methods 229
- Protection and control 230
- Branch circuits 231
- Regenerative power 231

Section 60 — Electrical communication systems 232
- Scope 232
- General 232
- Protection 232
- Inside conductors 233
- Equipment 235
- Outside conductors 235
- Underground circuits 237
- Grounding 238

Section 62 — Fixed electric heating systems 239
- Scope 239
- General 239
- Electric space-heating systems 243
- Electric surface heating systems 245
- Other heating systems 246

Section 64 — Renewable energy systems 248
- General 251
- Inverters 254
- Solar photovoltaic systems 256
- Small wind systems 259
Large wind systems 261
Micro-hydropower systems 262
Hydrokinetic power systems 262
Stationary fuel cell systems 263
Storage batteries 264

Section 66 — Amusement parks, midways, carnivals, film and TV sets, TV remote broadcasting locations, and travelling shows 267
Scope and application 267
General 267
Grounding 267
Services and distribution 268
Wiring methods and equipment 268
Single-conductor cables 269
Motors 270

Section 68 — Pools, tubs, and spas 271
Scope 271
General 271
Permanently installed swimming pools 274
Storable swimming pools 275
Hydromassage bathtubs 275
Spas and hot tubs 275

Section 70 — Electrical requirements for factory-built relocatable structures and non-relocatable structures 277
Scope 277
Relocatable structures 277
Non-relocatable structures (factory-built) 281

Section 72 — Mobile home and recreational vehicle parks 282
Scope and application 282
General 282

Section 74 — Airport installations 284

Section 76 — Temporary wiring 286

Section 78 — Marinas, yacht clubs, marine wharves, structures, and fishing harbours 288
Marinas and yacht clubs 288
Marine wharves, structures, and fishing harbours 289

Section 80 — Cathodic protection 291

Section 82 — Closed-loop and pre-closed-loop power distribution 293

Section 84 — Interconnection of electric power production sources 295

Section 86 — Electric vehicle charging systems 297
Scope 297
General 297
Equipment 297
Control and protection 297
Electric vehicle supply equipment locations 298

Tables 299

Diagrams 375

Appendix A — Safety standards for electrical equipment 384
Appendix B — Notes on Rules 402
Appendix C — The Technical Committee on the Canadian Electrical Code, Part I — Organization and rules of procedure 511
Appendix D — Tabulated general information 529
Appendix E — Dust-free rooms 590
Appendix F — Recommended installation practice for intrinsically safe and non-incendive electrical equipment and wiring 593
Appendix G — Electrical installations of fire protection systems 601
Appendix H — Combustible gas detection instruments for use in Class I hazardous locations 605
Appendix I — Interpretations 608
Appendix J — Rules and Notes to Rules for installations using the Class and Division system of classification 609
Appendix K — Extract from IEC 60364-1 661
Appendix L — Engineering guidelines for determining hazardous area classifications 667
Index 673
Preface

This edition features important revisions to many Sections. Section 4 now contains requirements for high-voltage cable ampacities and clarified Rules for conductor termination temperature. In addition, a new table (Table 39) simplifies residential service and feeder conductor selection. More options are provided for load and voltage drop calculations.

Bonding conductor selection has been clarified through the addition of the new Tables 16A and 16B. In addition, Section 12 contains many new and revised requirements for wiring methods, and the conduit fill tables have been expanded.

Section 18 has undergone major revisions. Requirements for Class II and Class III locations have been relocated to Appendix J, and requirements for explosive dust atmospheres based on IEC Zone 20, Zone 21, and Zone 22 have been added to Section 18. The requirements are now located as follows:

| Zones 0, 1, 2, 20, 21, and 22 | Section 18 |
| Classes I, II, and III and associated Divisions | Appendix J |

Note: References to Class I alone are intended as general references to all classifications of explosive gas atmospheres, Zone 0, Zone 1, and Zone 2. References to Class II alone or to Class III alone are intended as general references to all classifications of explosive dust atmospheres, Zone 20, Zone 21, and Zone 22. Specific references to a Zone of a Class I location are references to that Zone. There are currently no references to Zones or Divisions of Class II or Class III locations in the body of the Rules of this Code (i.e., Sections 0 to 86).

Other revisions in this edition include the following:
- requirements for arc-fault protection have been expanded and clarified;
- Section 50 has been merged with Section 64;
- Section 62 has been completely rewritten; and
- the term “injury” has been replaced with “damage” throughout the Code.

Many of the changes in this edition were developed by cross-functional working groups. Their work is gratefully acknowledged.

General arrangement

The Code is divided into numbered Sections, each covering some main division of the work. Sections 0 to 16 and 26 are considered general Sections, and the other Sections supplement or amend the general Sections. The Sections are divided into numbered Rules, with captions for easy reference, as follows:

(a) Numbering system — With the exception of Section 38, even numbers have been used throughout to identify Sections and Rules. Rule numbers consist of the Section number separated by a hyphen from the 3- or 4-digit figure. The intention in general is that odd numbers may be used for new Rules required by interim revisions. Due to the introduction of some new Rules and the deletion of some existing Rules during the revision of each edition, the Rule numbers for any particular requirement are not always the same in successive editions.
(b) **Subdivision of Rules** — Rules are subdivided in the manner illustrated by Rules 8-204 and 8-206, and the subdivisions are identified as follows:

<table>
<thead>
<tr>
<th>00-000</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Subrule</td>
</tr>
<tr>
<td>(a)</td>
<td>Item</td>
</tr>
<tr>
<td>(i)</td>
<td>Item</td>
</tr>
<tr>
<td>(A)</td>
<td>Item</td>
</tr>
</tbody>
</table>

(c) **Reference to other Rules, etc.** — Where reference is made to two or more Rules (e.g., Rules 10-200 to 10-206), the first and last Rules mentioned are included in the reference. Where reference is made to a Subrule or Item in the same Rule, only the Subrule number and/or Item letter and the word “Subrule” or “Item” need be mentioned. If the reference is to another Rule or Section, then the Rule number and the word “Rule” shall be stated (e.g., “Rule 10-200(3)” and not “Subrule (3) of Rule 10-200”).

The principal changes that have been made between the 2009 and 2012 editions of the *Canadian Electrical Code, Part I*, and this new edition, published in 2015, are marked in the text of the Code by the symbol delta (Δ) in the margin. Users of the Code are advised that the change markers in the text are not intended to be all-inclusive and are provided as a convenience only; such markers cannot constitute a comprehensive guide to the reorganization or revision of the Code. Care must therefore be taken not to rely on the change markers to determine the current requirements of the Code. As always, users of the Code must consider the entire Code and any local amendments or interpretations.

Acknowledgement
The use of material contained in the *National Electrical Code* is acknowledged.

The history and operation of the Canadian Electrical Code, Part I
The preliminary work in preparing the Canadian Electrical Code began in 1920 when a special committee, appointed by the main Committee of the Canadian Engineering Standards Association, recommended its development. A third meeting of this Committee was held in June 1927 with representatives from Nova Scotia, Québec, Ontario, Manitoba, Saskatchewan, and British Columbia in attendance. At this meeting, the revised draft, which had been discussed at the previous two meetings, was formally approved and it was resolved that it be printed as Part I of the *Canadian Electrical Code*.

The Committee on the CE Code, Part I, is composed of 41 members, with representation from inspection authorities, industry, utilities, and allied interests. The main Committee meets once a year and deals with reports that have been submitted by the Section Subcommittees, which work under the jurisdiction of the main Committee. Suggestions for changes to the Code may be made by any member of the Committee or anyone outside the Committee as outlined in Clause C6.

Notes:
(1) Although the intended primary application of this Standard is stated in its Scope, it is important to note that it remains the responsibility of the users of the Standard to judge its suitability for their particular purpose.
(2) This Standard is subject to periodic review, and suggestions for its improvement will be referred to the appropriate committee.
(3) All enquiries regarding this Standard should be addressed to CSA Group, 178 Rexdale Blvd., Toronto, Ontario, Canada M9W 1R3.

Requests for interpretation should be worded in such a manner as to permit a specific “yes” or “no” answer based on the literal text of the requirement concerned.

Interpretations are available on the Current Standards Activities page at standardsactivities.csa.ca.
Metric units

Symbols and conversion factors for SI units

Recognized symbols for SI units have been used in the *Canadian Electrical Code, Part I*. For the convenience of the user, these symbols and the units they represent have been listed in the following table; the table also gives a multiplying factor that may be used to convert the SI unit to the previously used unit.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>SI unit</th>
<th>Multiplying factor for conversion to previously used unit</th>
<th>Previously used unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ampere(s)</td>
<td>1</td>
<td>ampere(s)</td>
</tr>
<tr>
<td>cm³</td>
<td>cubic centimetre(s)</td>
<td>0.061</td>
<td>cubic inch(es)</td>
</tr>
<tr>
<td>°(s)</td>
<td>degree(s) (angle)</td>
<td>1</td>
<td>degree(s) (angle)</td>
</tr>
<tr>
<td>°C rise</td>
<td>degree(s) Celsius</td>
<td>1.8</td>
<td>degree(s) Fahrenheit</td>
</tr>
<tr>
<td>°C temperature</td>
<td>degree(s) Celsius</td>
<td>1.8 plus 32</td>
<td>degree(s) Fahrenheit</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
<td>1</td>
<td>hour(s) (time)</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
<td>1</td>
<td>cycles per second</td>
</tr>
<tr>
<td>J</td>
<td>joule(s)</td>
<td>0.7376</td>
<td>foot-pound(s)</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram(s)</td>
<td>2.205</td>
<td>pound(s)</td>
</tr>
<tr>
<td>kJ</td>
<td>kilojoule(s)</td>
<td>737.6</td>
<td>foot-pound(s)</td>
</tr>
<tr>
<td>km</td>
<td>kilometre</td>
<td>0.621</td>
<td>mile(s)</td>
</tr>
<tr>
<td>kPa</td>
<td>kilopascal(s)</td>
<td>0.295</td>
<td>inch(es) of mercury</td>
</tr>
<tr>
<td>kW</td>
<td>kilowatt</td>
<td>0.334</td>
<td>feet of water</td>
</tr>
<tr>
<td>lx</td>
<td>lux</td>
<td>0.145</td>
<td>pound(s) per square inch (psi)</td>
</tr>
<tr>
<td>L</td>
<td>litre</td>
<td>3415.179</td>
<td>BTU/h</td>
</tr>
<tr>
<td>m</td>
<td>metre(s)</td>
<td>0.093</td>
<td>foot-candle(s)</td>
</tr>
<tr>
<td>m²</td>
<td>square metre(s)</td>
<td>3.281</td>
<td>feet</td>
</tr>
<tr>
<td>m³</td>
<td>cubic metre(s)</td>
<td>10.764</td>
<td>square feet</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
<td>35.315</td>
<td>cubic feet</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
<td>1</td>
<td>megacycles per second</td>
</tr>
<tr>
<td>mL</td>
<td>millilitre(s)</td>
<td>1</td>
<td>minute(s)</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre(s)</td>
<td>0.061</td>
<td>cubic inch(es)</td>
</tr>
<tr>
<td>mm²</td>
<td>square millimetre(s)</td>
<td>0.03937</td>
<td>inch(es)</td>
</tr>
<tr>
<td>N•m</td>
<td>newton•metre</td>
<td>0.00155</td>
<td>square inch(es)</td>
</tr>
<tr>
<td>Ω</td>
<td>ohm(s)</td>
<td>8.85</td>
<td>pound-force inches</td>
</tr>
<tr>
<td>Pa</td>
<td>pascal(s)</td>
<td>1</td>
<td>ohm(s)</td>
</tr>
<tr>
<td>V</td>
<td>volt(s)</td>
<td>1</td>
<td>inch(es) of mercury</td>
</tr>
<tr>
<td>W</td>
<td>watt(s)</td>
<td>0.000295</td>
<td>feet of water</td>
</tr>
<tr>
<td>μF</td>
<td>microfarad(s)</td>
<td>0.000334</td>
<td>pounds per square inch (psi)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.000145</td>
<td>volts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>watts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>microfarad(s)</td>
</tr>
</tbody>
</table>
Conduit sizes

Starting in the 2006 edition of the Code, the metric trade designator has been used exclusively to identify conduit size. The following table is provided for convenience only.

Conduit trade sizes

<table>
<thead>
<tr>
<th>Inches</th>
<th>Metric designator</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8</td>
<td>12</td>
</tr>
<tr>
<td>1/2</td>
<td>16</td>
</tr>
<tr>
<td>3/4</td>
<td>21</td>
</tr>
<tr>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>1-1/4</td>
<td>35</td>
</tr>
<tr>
<td>1-1/2</td>
<td>41</td>
</tr>
<tr>
<td>2</td>
<td>53</td>
</tr>
<tr>
<td>2-1/2</td>
<td>63</td>
</tr>
<tr>
<td>3</td>
<td>78</td>
</tr>
<tr>
<td>3-1/2</td>
<td>91</td>
</tr>
<tr>
<td>4</td>
<td>103</td>
</tr>
<tr>
<td>5</td>
<td>129</td>
</tr>
<tr>
<td>6</td>
<td>155</td>
</tr>
<tr>
<td>8</td>
<td>200</td>
</tr>
</tbody>
</table>
Reference publications

This Standard refers to the following publications, and the year dates shown indicate the latest editions available at the time the Standard was approved:

CSA Group
- 6.19-01 (R2011), *Residential carbon monoxide alarming devices*
- ASME A17.1-2013/CSA B44-13, *Safety code for elevators and escalators*
- CSA B44.1-14/ASME A17.5-2014, *Elevator and escalator electrical equipment*
- B52-13, *Mechanical refrigeration code*
- CAN/CSA-B72-M87 (R2013), *Installation code for lightning protection systems*
- B108-14, *Compressed natural gas fuelling stations installation code*
- B137 Series-13, *Thermoplastic pressure piping compendium*
- B149.1-10, *Natural gas and propane installation code*
- B149.2-10, *Propane storage and handling code*
- B355-09 (R2013), *lifts for persons with physical disabilities*
- CAN/CSA-B613-00 (R2012), *Private residence lifts for persons with physical disabilities*
- CAN/CSA-C22.2 No. 0-10, *General requirements — Canadian Electrical Code, Part II*
- C22.2 No. 1-04, *Audio, video, and similar electronic equipment (withdrawn)*
- C22.2 No. 3-M1988 (R2014), *Electrical features of fuel-burning equipment*
- CAN/CSA-C22.2 No. 4-04 (R2014), *Enclosed and dead-front switches*
- C22.2 No. 5-13, *Molded-case circuit breakers, molded-case switches, and circuit-breaker enclosures*
- C22.2 No. 14-13, *Industrial control equipment*
- C22.2 No. 18.1-13, *Metallic outlet boxes*
- C22.2 No. 18.2-06 (R2011), *Nonmetallic outlet boxes*
- C22.2 No. 22-M1986 (R2013), *Electrical equipment for flammable and combustible fuel dispensers*
- C22.2 No. 25-1966 (R2014), *Enclosures for use in Class II Groups E, F, and G hazardous locations*
- C22.2 No. 29-11, *Panelboards and enclosed panelboards*
- C22.2 No. 30-M1986 (R2012), *Explosion-proof enclosures for use in Class I hazardous locations*
- C22.2 No. 41-13, *Grounding and bonding equipment*
- C22.2 No. 42-10, *General use receptacles, attachment plugs, and similar wiring devices*
- C22.2 No. 42.1-13, *Cover plates for flush-mounted wiring devices*
- C22.2 No. 45.1-07 (R2012), *Electrical rigid metal conduit — Steel*
- C22.2 No. 46-13, *Electric air-heaters*
- C22.2 No. 56-13, *Flexible metal conduit and liquid-tight flexible metal conduit*
- C22.2 No. 64-10, *Household cooking and liquid-heating appliances*
- C22.2 No. 65-13, *Wire connectors*
- C22.2 No. 77-14, *Motors with inherent overheating protection*
- C22.2 No. 82-1969 (R2013), *Tubular support members and associated fittings for domestic and commercial service masts*
- C22.2 No. 83-M1985 (R2013), *Electrical metallic tubing*
- C22.2 No. 83.1-07 (R2012), *Electrical metallic tubing — Steel*
- C22.2 No. 85-14, *Rigid PVC boxes and fittings*
- C22.2 No. 100-14, *Motors and generators*
- C22.2 No. 106-05 (R2010), *HRC-miscellaneous fuses*
- C22.2 No. 107.1-01 (R2011), *General use power supplies*
- C22.2 No. 111-10, *General-use snap switches*
- C22.2 No. 124-04 (R2014), *Mineral-insulated cable*
- C22.2 No. 126.1-09 (R2014), *Metal cable tray systems*
- CAN/CSA-C22.2 No. 126.2-02 (R2012), *Nonmetallic cable tray systems*
- CAN/CSA-C22.2 No. 130-03 (R2013), *Requirements for electrical resistance heating cables and heating device sets*
C22.2 No. 137-M1981 (R2014), Electric luminaires for use in hazardous locations
C22.2 No. 141-10, Emergency lighting equipment
C22.2 No. 145-11, Electric motors and generators for use in hazardous (classified) locations
C22.2 No. 152-M1984 (R2011), Combustible gas detection instruments
CAN/CSA-C22.2 No. 157-92 (R2012), Intrinsically safe and non-incendive equipment for use in hazardous locations
C22.2 No. 159-M1987 (R2014), Attachment plugs, receptacles, and similar wiring devices for use in hazardous locations: Class I, Groups A, B, C, and D; Class II, Group G, in coal or coke dust, and in gaseous mines
C22.2 No. 174-M1984 (R2012), Cables and cable glands for use in hazardous locations
C22.2 No. 178.1-12, Transfer switch equipment
C22.2 No. 211.0-03 (R2013), General requirements and methods of testing for nonmetallic conduit
C22.2 No. 211.1-06 (R2011), Rigid types EB1 and DB2/ES2 PVC conduit
C22.2 No. 211.2-06 (R2011), Rigid PVC (unplasticized) conduit
C22.2 No. 211.3-96 (R2007), Reinforced thermosetting resin conduit (RTRC) and fittings (withdrawn)
C22.2 No. 213-M1987 (R2013), Non-incendive electrical equipment for use in Class I, Division 2 hazardous locations
C22.2 No. 218.1-13, Spas, hot tubs, and associated equipment
CAN/CSA-C22.2 No. 227.1-06 (R2011), Electrical nonmetallic tubing
C22.2 No. 227.2.1-14, Liquid-tight flexible non-metallic conduit
C22.2 No. 248 series, Low-voltage fuses
C22.2 No. 250.0-08 (R2013), Luminaires
CAN/CSA-C22.2 No. 257-06 (R2011), Interconnecting inverter-based micro-distributed resources to distribution systems
C22.2 No. 269.1-14, Surge protective devices — Type 1 — Permanently connected
C22.2 No. 269.2-13, Surge protective devices — Type 2 — Permanently connected
C22.2 No. 269.3-14, Surge protective devices — Type 3 — Cord connected, direct plug-in, and receptacle type
C22.2 No. 271-11, Photovoltaic cables
C22.2 No. 272-14, Wind turbine electrical systems
C22.2 No. 273-14, Cablebus
CAN/CSA-C22.2 No. 60079-0:11, Explosive atmospheres — Part 0: Equipment — General requirements
CAN/CSA-C22.2 No. 60079-1:11, Explosive atmospheres — Part 1: Equipment protection by flameproof enclosures “d”
CAN/CSA-C22.2 No. 60079-2:12, Explosive atmospheres — Part 2: Equipment protection by pressurized enclosure “p”
CAN/CSA-C22.2 No. 60079-5:11, Explosive atmospheres — Part 5: Equipment protection by powder filling “q”
CAN/CSA-C22.2 No. 60079-6:11, Explosive atmospheres — Part 6: Equipment protection by oil immersion “o”
CAN/CSA-C22.2 No.60079- 7:12, Explosive atmospheres — Part 7: Equipment protection by increased safety “e”
CAN/CSA-C22.2 No. 60079-11:11, Explosive atmospheres — Part 11: Equipment protection by intrinsic safety “i”
CAN/CSA-C22.2 No. 60079-15:12, Electrical apparatus for explosive gas atmospheres — Part 15: Construction, test and marking of type of protection “n” electrical apparatus
CAN/CSA-C22.2 No. 60079-18:12, Explosive atmospheres — Part 18: Equipment protection by encapsulation “m”
CAN/CSA-C22.2 No. 60079-29-1:12, Explosive atmospheres — Part 29-1: Gas detectors — Performance requirements of detectors for flammable gases
CAN/CSA-C22.2 No. 60079-31:12, Explosive atmospheres — Part 31: Equipment dust ignition protection by enclosure “t”
CAN/CSA-C22.2 No. 60529:05 (R2010), Degrees of protection provided by enclosures (IP Code)
CAN/CSA-C22.2 No. 60601 series, Medical electrical equipment
CAN/CSA-C22.2 No. 61241-4:12, Electrical apparatus for use in the presence of combustible dust — Part 4: Type of protection “pD”
CAN/CSA-C22.2 No. 61730-1:11, Photovoltaic (PV) module safety qualification — Part 1: Requirements for construction
CAN/CSA-C22.2 No. 61730-2:11, Photovoltaic (PV) module safety qualification — Part 2: Requirements for testing
CAN/CSA-C22.2 No. 62275-10, Cable management systems — Cable ties for electrical installations
CAN/CSA-C22.3 No. 1-10, Overhead systems
CAN/CSA-C22.3 No. 7-10, Underground systems
CAN/CSA-C68.5-13, Shielded and concentric neutral power cable for distribution utilities
C68.10-14, Shielded power cable for commercial and industrial applications, 5–46 kV
C83-96 (R2011), Communication and power line hardware
CAN3-C235-83 (R2010), Preferred voltage levels for ac systems, 0 to 50 000 V
C282-09, Emergency electrical power supply for buildings
CAN/CSA-CS50052-99 (R2012), Cast aluminium alloy enclosures for gas-filled high-voltage switchgear and controlgear
CAN/CSA-CS50064-99 (R2012), Wrought aluminium and aluminium alloy enclosures for gas-filled high-voltage switchgear and controlgear
CAN/CSA-CS50068-99 (R2012), Wrought steel enclosures for gas-filled high-voltage switchgear and controlgear
CAN/CSA-CS50069-99 (R2012), Welded composite enclosures of cast and wrought aluminium alloys for gas-filled high-voltage switchgear and controlgear
CAN/CSA-CS50089-99 (R2012), Cast resin partitions for metal-enclosed gas-filled high-voltage switchgear and controlgear
CAN/CSA-CS62155:06 (R2011), Hollow pressurized and unpressurized ceramic and glass insulators for use in electrical equipment with rated voltages greater than 1000 V
CAN/CSA-IEC 61400-24:12, Wind turbines — Part 24: Lightning protection
M421-11, Use of electricity in mines
S413-14, Parking structures
SPE-1000-13, Model code for the field evaluation of electrical equipment
Z32-09 (R2014), Electrical safety and essential electrical systems in health care facilities
Z98-14, Passenger ropeways and passenger conveyors
CAN/CSA-Z240 MH Series-92 (R2005), Mobile homes (withdrawn)
CAN/CSA-Z240 RV Series-08 (R2013), Recreational vehicles
CAN/CSA-Z241 Series-03 (R2013), Park model trailers
CAN/CSA-Z267-00 (R2011), Safety code for amusement rides and devices
Z462-12, Workplace electrical safety
CAN/CSA-Z662-11 (R2013), Oil and gas pipeline systems

ANSI (American National Standards Institute)
B77.1-2011, Passenger Ropeways — Aerial Tramways, Aerial Lifts, Surface Lifts, Tows and Conveyors — Safety Requirements

ANSI/ASME (American National Standards Institute/American Society of Mechanical Engineers)
B1.20.1-2013, Pipe Threads, General Purpose (Inch)

ANSI/IEEE (American National Standards Institute/Institute of Electrical and Electronics Engineers)

© 2015 Canadian Standards Association
60300 Series, Dependability management
60364-1:2005, Low-voltage electrical installations — Part 1: Fundamental principles, assessment of general characteristics, definitions
60781:1989, Application guide for calculation of short-circuit currents in low-voltage radial systems (withdrawn)
61010-1:2010, Safety requirements for electrical equipment for measurement, control, and laboratory use — Part 1: General requirements
61241-2-1:1994, Electrical apparatus for use in the presence of combustible dust — Part 2: Test methods — Section 1: Methods for determining the minimum ignition temperatures of dust
GUIDE 117 (edition 1.0, 2010-10-13), Electrotechnical equipment — Temperatures of touchable hot surfaces

IEEE (Institute of Electrical and Electronics Engineers)
45-2002, IEEE Recommended Practice for Electrical Installations on Shipboard
446-1995, IEEE Recommended Practice for Emergency and Standby Power Systems for Industrial and Commercial Applications
484-2002, IEEE Recommended Practice for Installation Design and Installation of Vented Lead-Acid Batteries for Stationary Applications
837-2014, IEEE Standard for Qualifying Permanent Connections Used in Substation Grounding
844-2000, Recommended Practice for Electrical Impedance, Induction, and Skin Effect Heating of Pipelines and Vessels
IEEE 1202-2006, IEEE Standard for Flame-Propagation Testing of Wire and Cable
C62.41.2-2002, IEEE Recommended Practice on Characterization of Surges in Low-Voltage (1000 V and less) AC Power Circuits
IEEE P1020/D12 (October 2011), IEEE Draft Guide for Control of Small (100 kVA to 5 MVA) Hydroelectric Power Plants

ISO (International Organization for Standardization)
965-1:2013, ISO general-purpose metric screw threads — Tolerances — Part 1: Principles and basic data
4225:1994, Air quality — General aspects — Vocabulary
6184-1:1985, Explosion protection systems — Part 1: Determination of explosion indices of combustible dusts in air

NEMA (National Electrical Manufacturers Association)
VE 1-2009, Metal Cable Tray Systems

NFPA (National Fire Protection Association)
20-2013, Standard for the Installation of Stationary Pumps for Fire Protection
30-2012, Flammable and Combustible Liquids Code
40-2011, Standard for the Storage and Handling of Cellulose Nitrate Film
51A-2012, Standard for Acetylene Cylinder Charging Plants
70-2014, National Electrical Code
70B-2013, Recommended Practice for Electrical Equipment Maintenance
72-2013, National Fire Alarm and Signaling Code
91-2010, Standard for Exhaust Systems for Air Conveying of Vapors, Gases, Mists, and Noncombustible Particulate Solids
496-2013, Standard for Purged and Pressurized Enclosures for Electrical Equipment
497-2012, Recommended Practice for the Classification of Flammable Liquids, Gases, or Vapors and of Hazardous (Classified) Locations for Electrical Installations in Chemical Process Areas
505-2013, Fire Safety Standard for Powered Industrial Trucks Including Type Designations, Areas of Use, Conversions, Maintenance, and Operation
655-2012, Standard for Prevention of Sulfur Fires and Explosions
820-2012, Standard for Fire Protection in Wastewater Treatment and Collection Facilities

NRCC (National Research Council Canada)
National Building Code of Canada, 2010
National Farm Building Code of Canada, 1995
National Fire Code of Canada, 2010

ULC (Underwriters Laboratories of Canada)
S139-12, Standard Method of Fire Test for Evaluation of Integrity of Electrical Power, Data, and Optical Fibre Cables
CAN/ULC-S524-06, Installation of Fire Alarm Systems
CAN/ULC-S531-14, Standard for Smoke Alarms

Other publications
Environment Canada, Canadian Climate Normals
Natural Resources Canada, Atlas of Canada
Section 0 — Object, scope, and definitions
(See Appendix G)

Object (see Appendix B)

The object of this Code is to establish safety standards for the installation and maintenance of electrical equipment. In its preparation, consideration has been given to the prevention of fire and shock hazards, as well as proper maintenance and operation.

The requirements in this Code address the fundamental principles of protection for safety contained in Section 131 of International Electrotechnical Commission Standard 60364-1, _Low-voltage electrical installations_.

IEC 60364-1, Section 131, contains fundamental principles of protection for safety that encompass protection against electric shock, thermal effects, overcurrent, fault currents, and overvoltage. Therefore, compliance with the requirements of this Code and proper maintenance will ensure an essentially safe installation. Safe installations may also be achieved by alternatives to this Code, when such alternatives meet the fundamental safety principles of IEC 60364-1 (see Appendix K). These alternatives are intended to be used only in conjunction with acceptable means to assess compliance of these alternatives with the fundamental safety principles of IEC 60364-1 by the authorities enforcing this Code.

Wiring installations that do not make provision for the increasing use of electricity may be overloaded in the future, resulting in a hazardous condition. It is recommended that the initial installation have sufficient wiring capacity and that there be some provision made for wiring changes that might be required as a result of future load growth.

This Code is not intended as a design specification nor as an instruction manual for untrained persons.

Scope

This Code covers all electrical work and electrical equipment operating or intended to operate at all voltages in electrical installations for buildings, structures, and premises, including factory-built relocatable and non-relocatable structures, and self-propelled marine vessels stationary for periods exceeding five months and connected to a shore supply of electricity continuously or from time to time, with the following exceptions:

(a) installations or equipment employed by an electric, communication, or community antenna distribution system utility in the exercise of its function as a utility, as recognized by the regulatory authority having jurisdiction, and located outdoors or in buildings or sections of buildings used for that purpose;
(b) equipment and facilities that are used in the operation of an electric railway and are supplied exclusively from circuits that supply the motive power;
(c) installations or equipment used for railway signalling and railway communication purposes, and located outdoors or in buildings or sections of buildings used exclusively for such installations;
(d) aircraft; and
(e) electrical systems in ships that are regulated under Transport Canada.

For mines and quarry applications, see also CSA M421.

This Code and any standards referenced in it do not make or imply any assurance or guarantee by the authority adopting this Code with respect to life expectancy, durability, or operating performance of equipment and materials so referenced.

Definitions

For the purpose of correct interpretation, certain terms have been defined and where such terms or their derivatives appear throughout this Code they shall be understood to have the following meanings. The ordinary or dictionary meaning of terms shall be used for terms not specifically defined in this Code.

Acceptable — acceptable to the authority enforcing this Code.

Accessible (as applied to equipment) — admitting close approach because the equipment is not guarded by locked doors, elevation, or other effective means.

Accessible (as applied to wiring methods) —

(a) not permanently closed in by the structure or finish of the building; and
(b) capable of being removed without disturbing the building structure or finish.