Structural Welding Code—Steel Reinforcing Bars
Abstract

This code covers the requirements for welding steel reinforcing bars in most reinforced concrete applications. It contains a body of rules for the regulations of welding steel reinforcing bars and provides suitable acceptance criteria for such welds.
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions is entrusted to appropriately qualified and competent personnel.

This standard may be superseded by new editions. This standard may also be corrected through publication of amendments or errata, or supplemented by publication of addenda. Information on the latest editions of AWS standards including amendments, errata, and addenda is posted on the AWS web page (www.aws.org). Users should ensure that they have the latest edition, amendments, errata, and addenda.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so.

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Standards Development, 8669 NW 36 St, # 130, Miami, FL 33166 (see Annex D). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS D1 Committee on Structural Welding. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are required and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS D1 Committee on Structural Welding and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS D1 Committee on Structural Welding to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 8669 NW 36 St, # 130, Miami, FL 33166.
This page is intentionally blank.
Personnel

AWS D1 Committee on Structural Welding

A. W. Sindel, Chair TRC Solutions
T. L. Niemann, Vice Chair Minnesota Department of Transportation
R. D. Medlock, 2nd Vice Chair High Steel Structures, Incorporated
J. A. Molin, Secretary American Welding Society
F. G. Armao The Lincoln Electric Company
U. W. Aschemeier Subsea Global Solutions
E. L. Bickford IISI
T. W. Burns Thom Burns Consulting, LLC
H. H. Campbell III Pazu Engineering
R. D. Campbell Bechtel
R. B. Corbit CB & I
M. A. Grieco Massachusetts Department of Transportation
J. J. Kenney Shell International E & P
J. H. Kiefer Conoco Phillips Company
S. W. Kopp High Steel Structures, Incorporated
V. Kuruvilla Genesis Quality Systems Lexicon
J. Lawmon American Engineering and Manufacturing
N. S. Lindell Vigor
D. R. Luciani Canadian Welding Bureau
P. W. Marshall Moonshine Hill Proprietary Systems Engineering
M. J. Mayes Terracon Consultants
D. L. McQuaid D. L. McQuaid & Associates, Incorporated
J. Merrill TRC Solutions
D. K. Miller The Lincoln Electric Company
J. B. Pearson Jr. LTK Engineering Services
D. D. Rager Rager Consulting, Incorporated
T. J. Schlafly AISC
R. E. Shaw Jr. Steel Structures Tech Center, Incorporated
R. W. Stieve Parsons Corporation
M. M. Tayarani Pennoni Associates, Incorporated
P. Torchio III Williams Enterprises of GA, Incorporated
D. G. Yantz Canadian Welding Bureau

Advisors to the D1 Committee on Structural Welding

W. G. Alexander WGAPE
N. J. Altebrando STV, Incorporated
E. M. Beck AMEC
B. M. Butler Walt Disney World Company
R. A. Dennis Consultant
G. L. Fox Consultant
H. E. Gilmer HRV Conformance Verification Associates, Incorporated
G. J. Hill G. J. Hill & Associates
M. L. Hoitmont Consultant
C. W. Holmes Modjeski & Masters, Incorporated
P. G. Kinney
Acute Technological Services

G. S. Martin
GE—Power & Water

D. C. Phillips
Hobart Brothers Company (Retired)

J. W. Post
J. W. Post & Associates, Incorporated

K. K. Verma
Consultant

B. D. Wright
Advantage Aviation Technologies

AWS D1I Subcommittee on Reinforcing Steel

N. S. Lindell, Chair
Vigor

M. E. Gase, Vice Chair
Midwest Steel, Incorporated

S. N. Borrero, Secretary
American Welding Society

R. C. Carter
SpaceX

J. A. Cochran
The Walsh Group

A. D. D’Amico
Bechtel

J. L. Davis
San Diego County Water Authority

D. P. Gustafson
Consultant

M. D. Kerr
McDermott

J. Merrill
TRC Solutions

E. D. Pratt
Clark Pacific

J. L. Warren
McDermott

J. S. Wirtz
WECTEC, LLC

Advisors to the D1I Subcommittee on Reinforcing Steel

M. J. Mayes
Terracon Consultants

J. E. Myers
Consultant

D. D. Rager
Rager Consulting, Incorporated

D. A. Ward
Vigor
Foreword

This foreword is not part of this standard but is included for informational purposes only.

The 1961 document was replaced with a greatly revised version, AWS D12.1-75, *Reinforcing Steel Welding Code*, with the format patterned after the AWS D1.1-72, *Structural Welding Code*. The 1975 code was produced by the AWS Structural Welding Committee but was not renumbered to reflect this committee change. As with ANSI/AWS D1.1, AWS D12.1-75 was designed as a self-contained code, including within it the qualification of welders and procedures, and requirements for workmanship, quality, and inspection.

The listings of materials and welding processes were revised in the D12.1-75 code. Items newly introduced were the carbon equivalent method for determining preheat, the parenthetical inclusion of metric (SI) conversions, and the two different methods of joint strength determination.

The AWS D12.1-75 document was revised and the title changed to ANSI/AWS D1.4-79, *Structural Welding Code—Reinforcing Steel*. Since the 1979 edition of ANSI/AWS D1.4, *Structural Welding Code—Reinforcing Steel*, was issued, further use by designers, engineers, and fabricators has necessitated a number of changes to the requirements; the 1992, 1998, 2005, and 2011 editions reflected these changes.

The evolution of AWS D1.4/D1.4M, *Structural Welding Code—Steel Reinforcing Bars*, is shown below:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS D12.1-61</td>
<td>Recommended Practices for Welding Reinforcing Steel, Metal Inserts and Connections in Reinforced Concrete Construction;</td>
</tr>
<tr>
<td>AWS D12.1-75</td>
<td>Reinforcing Steel Welding Code;</td>
</tr>
<tr>
<td>ANSI/AWS D1.4-79</td>
<td>Structural Welding Code—Reinforcing Steel;</td>
</tr>
<tr>
<td>ANSI/AWS D1.4-92</td>
<td>Structural Welding Code—Reinforcing Steel;</td>
</tr>
<tr>
<td>ANSI/AWS D1.4-98</td>
<td>Structural Welding Code—Reinforcing Steel;</td>
</tr>
<tr>
<td>AWS D1.4/D1.4M:2005</td>
<td>Structural Welding Code—Reinforcing Steel;</td>
</tr>
<tr>
<td>AWS D1.4/D1.4M:2011</td>
<td>Structural Welding Code—Reinforcing Steel; and</td>
</tr>
</tbody>
</table>

Changes in Code Requirements. Underlined text in the subclauses, tables, or figures indicates an editorial or technical change from the 2011 edition. A vertical line in the margin indicates a revision from the 2011 edition.
Summary of Changes

<table>
<thead>
<tr>
<th>Clause/Table/ Figure/Annex</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clause 1</td>
<td>Restructured to identify new safety and health information; new materials added. GTAW is now permitted as a prequalified welding process.</td>
</tr>
<tr>
<td>Clause 2</td>
<td>New clause that lists all normative references. This replaces subclause 1.9 from the 2011 edition.</td>
</tr>
<tr>
<td>Clause 3</td>
<td>New clause that provides terms and definitions specific to this standard. It replaces subclause 1.5 from the 2011 edition.</td>
</tr>
<tr>
<td>Clause 4</td>
<td>Previously Clause 2 in the 2011 edition. Base metal stresses and allowable stresses in welds were removed and replaced with new content on the design of welded joints. New Table 4.1 covers design strength and the allowable strength of welded joints.</td>
</tr>
<tr>
<td>Clause 5</td>
<td>Previously Clause 3 in the 2011 edition. New content on lap joints: bar diameter range, effects of eccentricity, and lap joints in an anchorage. Figures 5.1 through 5.5 modified for clarification.</td>
</tr>
<tr>
<td>Clause 6</td>
<td>Previously Clause 4 in the 2011 edition. New content on foreign materials and coatings, weld size. Figures 6.1 revised for clarity. Figure 6.2 extensively revised to include new schedules for weld profiles.</td>
</tr>
<tr>
<td>Clause 7</td>
<td>Previously Clause 5 in the 2011 edition. New content on GTAW electrodes and filler metals. Tables 7.1 revised to include several A5 filler metal specifications, most notably AWS A5.36.</td>
</tr>
<tr>
<td>Clause 8</td>
<td>Previously Clause 6 in the 2011 edition. Table 8.2 revised to include GTAW, bar diameter groups, and AWS A5.36. Figure 8.5 revised for clarity. Figure 8.8 is new.</td>
</tr>
<tr>
<td>Annex A</td>
<td>Sample forms now include GTAW.</td>
</tr>
<tr>
<td>Commentary</td>
<td>Commentary is new for this edition. This is a practice used by other D1 codes and as such will now be included as part of this standard.</td>
</tr>
</tbody>
</table>

Informative Annexes. These annexes are not code requirements but are provided to clarify code provisions by showing examples, providing information, or suggesting alternative good practices.

Errata. It is the Structural Welding Committee’s Policy that all errata should be made available to users of this code. Therefore, any significant errata will be published in the Society News Section of the Welding Journal and posted on the AWS web site at: http://www.aws.org/technical/d1/.

Suggestions. Your comments for improving AWS D1.4/D1.4M:2018, Structural Welding Code—Steel Reinforcing Bars are welcome. Submit comments to the Managing Director, Standards Development, American Welding Society, 8669 NW 36 St, # 130, Miami, FL 33166; telephone (305) 443-9353; fax (305) 443-5951; e-mail info@aws.org; or via the AWS web site <http://www.aws.org>.
Table of Contents

Personnel ... v

Foreword ... vii

List of Tables .. xi

List of Figures .. xi

1. **General Requirements** .. 1
 1.1 Scope .. 1
 1.2 Units of Measurement ... 1
 1.3 Safety ... 1
 1.4 Application ... 2
 1.5 Steel Reinforcing Bar Base Metal ... 2
 1.6 Welding Processes ... 3

2. **Normative References** .. 4

3. **Terms and Definitions** .. 6

4. **Design of Welded Joints** ... 7
 4.1 Design Basis ... 7
 4.2 Effective Weld Areas, Lengths, Throats, and Sizes 7
 4.3 Other Limit States .. 8

5. **Structural Details** ... 11
 5.1 Transition in Bar Size Number .. 11
 5.2 Joint Types .. 11
 5.3 Direct Butt Joints .. 11
 5.4 Indirect Butt Joints ... 11
 5.5 Lap Joints .. 11
 5.6 Lap Joints in an Anchorage .. 11
 5.7 Interconnection of Precast Members ... 11

6. **Workmanship** ... 19
 6.1 Preparation of Base Metal ... 19
 6.2 Assembly .. 19
 6.3 Control of Distortion, Shrinkage, and Heat ... 20
 6.4 Quality of Welds ... 20

7. **Technique** ... 25
 7.1 Filler Metal Requirements ... 25
 7.2 Minimum Preheat and Interpass Temperature Requirements 25
 7.3 Welding Environment ... 25
 7.4 Arc Strikes .. 25
 7.5 Weld Cleaning .. 26
 7.6 Tack Welds ... 26
 7.7 Progression of Welding ... 26
 7.8 Welding of Coated Base Metal ... 26
 7.9 SMAW Electrodes .. 26
 7.10 GMAW Electrodes .. 27
 7.11 FCAW Electrodes .. 27
7.12 GTAW Electrodes and Filler Metals ... 27
7.13 Shielding Gas .. 28

8. Qualification ... 33
8.1 General .. 33
8.2 WPS Qualification ... 33
8.3 Welder Qualification .. 35
8.4 Retests .. 37
8.5 Period of Effectiveness ... 38
8.6 Records ... 38

9. Inspection ... 52
9.1 General Conditions .. 52
9.2 Inspection of Base Metals .. 52
9.3 Inspection of WPS Qualification and Equipment .. 52
9.4 Inspection of Welder Qualifications .. 52
9.5 Inspection of Work and Records .. 53
9.6 Obligations of the Contractor ... 53
9.7 Nondestructive Testing .. 53
9.8 Personnel Qualification .. 54
9.9 Radiographic Testing ... 54

Annex A (Informative)—Sample Welding Forms .. 61
Annex B (Informative)—Nominal Dimensions of ASTM Standard Reinforcing Bars .. 67
Annex C (Informative)—Temperature–Moisture Content Charts 69
Annex D (Informative)—Requesting an Official Interpretation on an AWS Standard 73

Commentary ... 75

List of AWS Documents on Structural Welding ... 83
List of Tables

<table>
<thead>
<tr>
<th>Tables</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Design Strength and Allowable Strength of Welded Joints ...9</td>
</tr>
<tr>
<td>5.1</td>
<td>CJP Groove Weld Requirements for Direct Butt Joints ...12</td>
</tr>
<tr>
<td>6.1</td>
<td>Radiographic Acceptance Criteria ..21</td>
</tr>
<tr>
<td>7.1</td>
<td>Matching Filler Metal Requirements ...29</td>
</tr>
<tr>
<td>7.2</td>
<td>Minimum Preheat and Interpass Temperatures ..31</td>
</tr>
<tr>
<td>7.3</td>
<td>Permissible Atmospheric Exposure of Low-Hydrogen Electrodes32</td>
</tr>
<tr>
<td>8.1</td>
<td>Prequalified WPS Fillet Weld Requirements ..39</td>
</tr>
<tr>
<td>8.2</td>
<td>PQR Essential Variable Changes Requiring WPS Requalification for SMAW, GMAW, GTAW, and FCAW ..40</td>
</tr>
<tr>
<td>8.3</td>
<td>Number and Type of Tests for WPS Qualification ...41</td>
</tr>
<tr>
<td>8.4</td>
<td>Macroetch Acceptance Criteria ...41</td>
</tr>
<tr>
<td>8.5</td>
<td>Welder Qualification—Number, Type of Test, Production Welds, and Positions Qualified42</td>
</tr>
<tr>
<td>9.1</td>
<td>Hole-Type Image Quality Indicator (IQI) Requirements ..58</td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figures</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Effective Throat for Flare-Groove Welds ..10</td>
</tr>
<tr>
<td>5.1</td>
<td>Direct Butt Joints Showing Transition Between Bars of Different Sizes13</td>
</tr>
<tr>
<td>5.2</td>
<td>Direct Butt Joints ...14</td>
</tr>
<tr>
<td>5.3</td>
<td>Indirect Butt Joints ..15</td>
</tr>
<tr>
<td>5.4</td>
<td>Lap Joints ..16</td>
</tr>
<tr>
<td>5.5</td>
<td>Details of Joints of Anchorages, Base Plates, and Inserts ..17</td>
</tr>
<tr>
<td>6.1</td>
<td>Minimum Distance to Cold Bending Radius Tangent Points ..22</td>
</tr>
<tr>
<td>6.2</td>
<td>Acceptable and Unacceptable Weld Profiles ..24</td>
</tr>
<tr>
<td>8.1</td>
<td>Direct Butt Joint Test Positions for Groove Welds ..43</td>
</tr>
<tr>
<td>8.2</td>
<td>Indirect Butt Joint Test Positions for Flare-Groove Welds or Fillet Welds44</td>
</tr>
<tr>
<td>8.3</td>
<td>Positions of Groove Welds ..45</td>
</tr>
<tr>
<td>8.4</td>
<td>Positions of Fillet Welds ..46</td>
</tr>
<tr>
<td>8.5</td>
<td>Full-Section Tension Test Specimens for WPS Qualification Tests47</td>
</tr>
<tr>
<td>8.6</td>
<td>Full-Section Tension Test and Macroetch Test Specimens for Welder Qualification Tests 49</td>
</tr>
<tr>
<td>8.7</td>
<td>Bend Test Specimen for Welder Qualification Tests ..50</td>
</tr>
<tr>
<td>8.8</td>
<td>Flare-Bevel Groove Weld Effective Throat ..51</td>
</tr>
<tr>
<td>9.1</td>
<td>Source Position ..59</td>
</tr>
<tr>
<td>9.2</td>
<td>Film Placement ..60</td>
</tr>
<tr>
<td>C.1</td>
<td>Temperature–Moisture Content Chart to be Used in Conjunction with Testing Program to 70</td>
</tr>
<tr>
<td></td>
<td>Determine Extended Atmospheric Exposure Time of Low-Hydrogen Electrodes</td>
</tr>
<tr>
<td>C.2</td>
<td>Application of Temperature–Moisture Content Chart in Determining Atmospheric Exposure 71</td>
</tr>
<tr>
<td></td>
<td>Time of Low-Hydrogen Electrodes ...</td>
</tr>
</tbody>
</table>
This page is intentionally blank.
Structural Welding Code—Steel Reinforcing Bars

1. General Requirements

1.1 Scope
This code shall apply to the welding of the following:
(1) Steel reinforcing bar to steel reinforcing bar, and
(2) Steel reinforcing bar to carbon or low-alloy structural steel.

When this code is stipulated in contract documents, conformance with all provisions shall be required, except for those provisions that the Engineer or contract documents specifically modifies or exempts.

1.2 Units of Measurement
This standard makes use of both the U.S. Customary Units and the International System of Units (SI); the latter are shown within brackets ([]) or in appropriate columns in tables and figures. The measurements may not be exact equivalents; therefore, each system must be used independently.

1.3 Safety
Safety and health issues and concerns are beyond the scope of this standard; some safety and health information provided, but such issues are not fully addressed herein.

Safety and Health information is available from the following sources:
American Welding Society:
(1) ANSI Z49.1, Safety in Welding, Cutting, and Allied Processes
(2) AWS Safety and Health Fact Sheets
(3) Other safety and health information on the AWS website
Material or Equipment Manufacturers:
(1) Safety Data Sheets supplied by the materials manufacturers
(2) Operating Manuals supplied by equipment manufacturers
Applicable Regulatory Agencies:
Work performed in accordance with this standard may involve the use of materials that have been deemed hazardous, and may involve operations or equipment that may cause injury or death. This standard does not purport to address all safety and health risks that may be encountered. The user of this standard should establish an appropriate safety program to address such risks as well as to meet applicable regulatory requirements. ANSI Z49.1 should be considered when developing the safety program.