Railway applications - Measurement of vertical forces on wheels and wheelsets

Part 1: On-track measurement sites for vehicles in service
National foreword

This British Standard is the UK implementation of EN 15654-1:2018.

The UK committee draws users’ attention to the distinction between normative and informative elements, as defined in Clause 3 of the CEN/CENELEC Internal Regulations, Part 3.

Normative: Requirements conveying criteria to be fulfilled if compliance with the document is to be claimed and from which no deviation is permitted.

Informative: Information intended to assist the understanding or use of the document. Informative annexes do not contain requirements, except as optional requirements, and are not mandatory. For example, a test method may contain requirements, but there is no need to comply with these requirements to claim compliance with the standard.

When speeds in km/h require unit conversion for use in the UK, users are advised to use equivalent values rounded to the nearest whole number. The use of absolute values for converted units should be avoided in these cases. Please refer to the table below for agreed conversion figures:

<table>
<thead>
<tr>
<th>INS, RST and ENE speed conversions</th>
</tr>
</thead>
<tbody>
<tr>
<td>km/h</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>160</td>
</tr>
<tr>
<td>170</td>
</tr>
</tbody>
</table>
INS, RST and ENE speed conversions

<table>
<thead>
<tr>
<th>km/h</th>
<th>mph</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>110</td>
</tr>
<tr>
<td>190</td>
<td>120</td>
</tr>
<tr>
<td>200</td>
<td>125</td>
</tr>
<tr>
<td>220</td>
<td>135</td>
</tr>
<tr>
<td>225</td>
<td>140</td>
</tr>
<tr>
<td>230</td>
<td>145</td>
</tr>
<tr>
<td>250</td>
<td>155</td>
</tr>
<tr>
<td>280</td>
<td>175</td>
</tr>
<tr>
<td>300</td>
<td>190</td>
</tr>
<tr>
<td>320</td>
<td>200</td>
</tr>
<tr>
<td>350</td>
<td>220</td>
</tr>
<tr>
<td>360</td>
<td>225</td>
</tr>
</tbody>
</table>

The UK participation in its preparation was entrusted to Technical Committee RAE/1/-/8, Railway Applications - Vehicle/Track Interaction.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a Contract. Users are responsible for its correct application.

© The British Standards Institution 2018
Published by BSI Standards Limited 2018

ISBN 978 0 580 90722 7

ICS 45.060.01

Compliance with a British Standard cannot confer immunity from legal Obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 28 February 2018.

Amendments/corrigenda issued since publication

| Date | Text Affected |
Railway applications - Measurement of vertical forces on wheels and wheelsets - Part 1: On-track measurement sites for vehicles in service
European foreword... 4
Introduction .. 5
1 Scope... 6
2 Normative references ... 7
3 Terms, definitions, symbols and abbreviations .. 7
3.1 Terms and definitions .. 7
3.2 Abbreviations .. 10
3.3 Symbols .. 10
4 Measured and derived quantities .. 11
4.1 Measured quantities .. 11
4.2 Mandatory derived quantities .. 11
4.3 Optional derived quantities .. 11
5 Metrological characteristics .. 14
5.1 General .. 14
5.2 Accuracy classes ... 14
5.3 Measurement and calibration range .. 16
5.4 Influence quantities ... 17
5.5 Condition of use ... 17
6 Technical requirements .. 17
6.1 Train and vehicle related capability .. 17
6.2 Environmental .. 18
6.3 Inputs and Outputs .. 18
6.4 Descriptive markings .. 21
6.5 Measuring device specific .. 22
6.6 Measuring site specific ... 23
Annex A (informative) Device assessment frame work ... 24
A.1 Introduction ... 24
A.2 Type approval test ... 24
A.3 Initial verification ... 24
A.4 In-service verification ... 24
A.5 Adjustment and verification methods ... 24
Annex B (informative) Measurement site selection criteria ... 25
B.1 Introduction ... 25
B.2 Measurement site .. 25
B.3 Criteria for site selection .. 26
Annex C (informative) Data exchange format .. 30
C.1 Introduction ... 30
European foreword

This document (EN 15654-1:2018) has been prepared by Technical Committee CEN/TC 256 “Railway applications”, the secretariat of which is held by DIN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by July 2018, and conflicting national standards shall be withdrawn at the latest by July 2018.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association, and supports essential requirements of EU Directive 2008/57/EC.

For relationship with EU Directive 2008/57/EC, see informative Annex ZA, which is an integral part of this document.

This document is the first part of a three part series collectively referred to as "Railway applications — Measurement of vertical forces on wheels and wheelsets". The series consists of:

— Part 1: On-track measurement sites for vehicles in service

— Part 2: Test in workshop for new, modified and maintained vehicles

— Part 3: Approval and verification of on track measurement sites for vehicles in service (CEN/TR)

According to the CEN-CENELEC Internal Regulations, the national standards organisations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.
Introduction

This European Standard has been developed to provide a common procedure for determining the axle load, wheel force and the mass of rail vehicles operating (in-service) in Europe.

This standard also details the evaluation of derived quantities such as asymmetric loading, overloading, vehicle mass and train mass. These quantities are obtained while the train is in-service and in motion.
1 Scope

The scope of this European Standard is restricted to the measurement of vertical wheel forces and calculation of derived quantities on vehicles in service. Measurements of a train in motion are used to estimate the static forces.

Derived quantities can be:
- axle loads;
- side to side load differences of a wheel set, bogie, vehicle;
- overall mass of vehicle or train set;
- mean axle load of a vehicle or train set.

This standard is not concerned with the evaluation of:
- dynamic wheel force or derived quantities;
- wheel condition (i.e. shape, profile, flats);
- lateral wheel force;
- combination of lateral and vertical wheel forces.

The standard defines accuracy classes for measurements to be made at any speed greater than 5 km/h within the calibrated range, which may be up to line speed.

The aim of this standard is to obtain measurement results that give representative values for the distribution of vertical wheel forces of a running vehicle, which under ideal conditions will be similar to those that can be obtained from a standing vehicle.

This standard does not impose any restrictions on the types of vehicles that can be monitored, or on which networks or lines the measuring system can be installed.

The standard lays down minimum technical requirements and the metrological characteristics of a system for measuring and evaluating a range of vehicle loading parameters. Also defined are accuracy classes for the parameters measured and the procedure for verifying the calibration.

The measuring system proposed in this standard should not be considered as safety critical. If the measuring system is connected to a train traffic command and control system then requirements that are not part of this standard may apply.

Measuring systems complying with this standard have the potential to enhance safety in the railway sector. However, the current operating and maintenance procedures rather than this standard are mandatory for ensuring safety levels in European rail networks.