Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-5: Radio disturbance and immunity measuring apparatus – Antenna calibration sites and reference test sites for 5 MHz to 18 GHz

Spécification des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Partie 1-5: Appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Emplacements d'étalonnage d'antenne et emplacements d'essai de référence pour la plage comprise entre 5 MHz et 18 GHz
CONTENTS

FOREWORD ... 6
INTRODUCTION ... 8

1 Scope ... 10
2 Normative references ... 10
3 Terms, definitions and abbreviations .. 10
 3.1 Terms and definitions ... 10
 3.1.1 Antenna terms ... 11
 3.1.2 Measurement site terms ... 13
 3.1.3 Other terms ... 14
 3.2 Abbreviations .. 15
4 Specifications and validation procedures for CALTS and REFTS from 5 MHz to 1000 MHz ... 16
 4.1 General .. 16
 4.2 Antenna calibration test site (CALTS) specification .. 16
 4.2.1 General .. 16
 4.2.2 Normative specification ... 17
 4.3 Test antenna specification ... 17
 4.3.1 General .. 17
 4.3.2 Details of the required characteristics of the test antenna 18
 4.4 Antenna calibration test site validation procedure ... 20
 4.4.1 General .. 20
 4.4.2 Test set-up .. 20
 4.4.3 Test frequencies and receive antenna heights ... 22
 4.4.4 SIL measurements .. 22
 4.4.5 Swept frequency SIL measurements ... 25
 4.4.6 Identifying and reducing reflections from antenna supports 28
 4.5 Antenna calibration test site acceptance criteria .. 28
 4.5.1 General .. 28
 4.5.2 Measurement uncertainties ... 28
 4.5.3 Acceptance criteria .. 29
 4.6 Calibration site with a metal ground plane for biconical antennas and tuned dipole antennas over the frequency range 30 MHz to 300 MHz .. 30
 4.7 Validation of a REFTS .. 31
 4.7.1 General .. 31
 4.7.2 Validation for horizontal polarization ... 31
 4.7.3 Validation for vertical polarization .. 31
 4.8 Validation report for CALTS and REFTS ... 33
 4.8.1 General .. 33
 4.8.2 Validation report requirements .. 33
 4.9 Site validation for the calibration of biconical and dipole antennas, and the biconical part of hybrid antennas in vertical polarization .. 34
 4.10 Validation of a CALTS using vertical polarization from 5 MHz to 30 MHz for the calibration of monopole antennas .. 35
 4.10.1 General .. 35
 4.10.2 Uncertainty evaluation ... 36
5 Validation methods for a FAR from 30 MHz to 18 GHz

5.1 General

5.2 Validation procedure 1 GHz to 18 GHz

5.2.1 Power transfer between two antennas

5.2.2 Measurement procedure for validation from 1 GHz to 18 GHz

5.2.3 Analysis of results

5.2.4 Acceptance criterion

5.2.5 Chamber performance versus polarization

5.2.6 Uncertainty

5.3 Validation of a FAR for the calibration of antennas by alternative methods

5.3.1 General

5.3.2 Validation of a FAR from 30 MHz to 1 GHz

5.3.3 Alternative validation of a FAR for the calibration of LPDA antennas above 1 GHz

5.3.4 Alternative validation of a FAR applying time-domain measurements above 500 MHz

5.4 Validation of a FAR for antenna radiation pattern measurements above 1 GHz

6 Validation methods for sites used for the calibration of directive antennas

6.1 Validation of the calibration site minimizing ground reflection by a height ≥ 4 m

6.1.1 Measurement procedure

6.1.2 Uncertainties

6.2 Validation of the calibration site minimizing ground reflection by use of absorber

7 Site validation by comparison of antenna factors, and application of RSM to evaluate the uncertainty contribution of a SAC site

7.1 Use of SAM for site validation by comparison of antenna factors

7.2 Application of RSM to evaluate the measurement uncertainty contribution of a calibration site comprising a SAC

Annex A (informative) CALTS characteristics and validation

A.1 General

A.2 The reflecting plane

A.2.1 Reflecting plane construction

A.2.2 Plane-edge effects and plane surroundings

A.3 Ancillary equipment

A.4 Additional stringent CALTS validation testing

A.4.1 General

A.4.2 Antenna-height scan measurements

A.4.3 Frequency scan measurements

Annex B (informative) Test antenna considerations

B.1 General

B.2 Example and verification of a test antenna

B.3 Determination of balun properties

B.3.1 The ideal lossless balun

B.3.2 Relations between balun properties and S-parameters

B.3.3 Insertion loss measurements
Annex C (informative) Antenna and SIL theory ..63
 C.1 Analytical relations ..63
 C.1.1 General ...63
 C.1.2 Total length of the test antenna ..64
 C.1.3 Theoretical SIL ...65
 C.1.4 Calculation example ...69
 C.2 Computations by the MoM ..72
 C.2.1 General ...72
 C.2.2 Antenna input impedance ...73
 C.2.3 Total length of the test antenna ..73
 C.2.4 SIL computations ..73
 C.2.5 Antenna factor (AF) computations ..80
Annex D (informative) Pascal Program used in C.1.4 ..84
Annex E (informative) Validation procedure checklist ..88
Annex F (informative) Evidence that field taper of VP site validation method has
 negligible effect on measured antenna factor ...90
 F.1 Investigation of vertical field taper ..90
 F.2 Calibration of biconical antennas using vertical polarization90
Bibliography ...92

Figure 1 – Schematic diagram of the test antenna ..18
Figure 2 – Adjustment of a telescopic wire element to the length L_{WE}19
Figure 3 – Determination of $V_{r1}(l)$ or $V_{r2}(l)$...23
Figure 4 – Determination of $V_{s}(l)$ with the wire antennas in their specified positions 23
Figure 5 – Example NSIL: horizontal polarization, antenna height 2 m, separation
 10 m ...26
Figure 6 – NSIL of the four pairs of calculable dipoles at 10 m separation and using
 the alternative heights for the 600 MHz to 1 000 MHz pair according to Table 527
Figure 7 – Relation between the quantities used in the SIL acceptance criterion29
Figure 8 – Set-up of site validation for EMC antenna calibrations above 1 GHz in a
 FAR, also showing distance between antenna phase centres38
Figure 9 – Example plots of $[A_{1}(d) - A_{1}(d_{3})]$ in dB against distance in m at 1 GHz
 to 18 GHz in 1 GHz steps, corrected for LPDA and horn phase centres40
Figure 10 – Example of antenna set-up for an LPDA antenna calibration in the
 frequency range above 200 MHz ..44
Figure 11 – Example of SIL versus antenna height measured at 200 MHz with two
 LPDA antennas in vertical polarization at 2.5 m distance between their midpoints
 above the reflecting ground plane of an OATS ...45
Figure 12 – Illustration of distances of transmit horn to omni-directional receive
 antenna and reflective building, and transmitted signal paths A and B45
Figure B.1 – Example of a test antenna ..58
Figure B.2 – Diagram of the measurement of S_{11} and S_{12}, and of S_{22} and S_{21}, when
 generator and load are interchanged ..59
Figure B.3 – Schematic diagram for determination of the insertion loss $A_{1}(l)$61
Figure B.4 – Schematic diagram for determination of the insertion loss $A_{2}(l)$61
Figure C.1 – Network model for A_{1c} calculations ..66
Figure C.2 – Equivalent circuit to the network in Figure C.166
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and nongovernmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

DISCLAIMER
This Consolidated version is not an official IEC Standard and has been prepared for user convenience. Only the current versions of the standard and its amendment(s) are to be considered the official documents.

This Consolidated version of CISPR 16-1-5 bears the edition number 2.1. It consists of the second edition (2014-12) [documents CISPR/A/1086A/FDIS and CISPR/A/1097/RVD] and its amendment 1 (2016-12) [documents CISPR/A/1183/FDIS and CISPR/A/1198/RVD]. The technical content is identical to the base edition and its amendment.
This Final version does not show where the technical content is modified by amendment 1. A separate Redline version with all changes highlighted is available in this publication.

International Standard CISPR 16-1-5 has been prepared by CISPR subcommittee A: Radio-interference measurements and statistical methods.

It has the status of a basic EMC publication in accordance with IEC Guide 107, *Electromagnetic compatibility – Guide to the drafting of electromagnetic compatibility publications*.

This edition includes the following significant technical changes with respect to the previous edition:

– site validation methods for other sites covered in CISPR 16-1-6 are added;
– smaller step sizes are specified for swept-frequency measurements;
– the minimum ground plane size is increased;
– other miscellaneous technical and editorial refinements are included.

A list of all parts of the CISPR 16 series can be found, under the general title *Specification for radio disturbance and immunity measuring apparatus and methods*, on the IEC website.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this amendment and the base publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
INTRODUCTION

This standard describes validation procedures for Calibration Test Sites (CALTS) that are used to calibrate antennas in the frequency range 5 MHz to 18 GHz. The associated antenna calibration procedures are described in CISPR 16-1-6.

Due to problems with suppressing ground reflections in the frequency range 30 MHz to 200 MHz, the main function of a reflecting ground plane is for the calibration of dipole, biconical, and hybrid antennas over the frequency range for which their H-plane patterns are uniform. The free-space antenna factor, F_a, for dipole antennas may be measured in a free-space environment above 200 MHz. Because of the difficulty of reducing reflections from objects that surround an antenna, and in particular the ground surface, a flat metal ground plane is used to ensure reproducibility of results and to enable the ground reflected signal to be precisely removed mathematically.

Requirements for the construction of a CALTS are given in Annex A. The specifications and validation procedures for a CALTS are given in Clause 4. The most precise way of validating a CALTS is to use calculable dipole antennas, which are the basis of the validation procedure in this standard. The design principles of calculable antennas are given in Annex B, and the theory and methods for calculating site insertion loss (SIL) are given in Annex C and Annex D.

Validation procedures for other antenna calibration sites are given in Clause 5 through Clause 7. Where an antenna calibration method utilizes the ground reflection, a CALTS is required. The validation methods are summarized in Table 1 with reference to the associated antenna calibration methods in CISPR 16-1-6.

All site validation methods involve the measurement of SIL between two antennas. It is critical that the validation of the site itself not be unduly compromised by reflections from antenna supports; see A.3 for associated guidance.
Table 1 – Summary of site validation methods by subclause number

<table>
<thead>
<tr>
<th>Calibration site(s)</th>
<th>CISPR 16-1-5 validation method(s) Subclause</th>
<th>CISPR 16-1-6:2014 calibration method(s) Subclause</th>
<th>Frequency range MHz</th>
<th>Antenna type(s)</th>
<th>Polarization</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CALTS for monopoles</td>
<td>4.10</td>
<td>G.1</td>
<td>5 to 30</td>
<td>Monopole</td>
<td>VP</td>
<td>With tolerance of ± 1 dB</td>
</tr>
<tr>
<td>2 CALTS or SACa</td>
<td>4, 7.2</td>
<td>8.4</td>
<td>30 to 1000</td>
<td>Biconical, LPDA, hybrid</td>
<td>HP</td>
<td>SSM</td>
</tr>
<tr>
<td>3 CALTS or SAC</td>
<td>4</td>
<td>9.2.2</td>
<td>30 to 300</td>
<td>Biconical, hybrid, dipole</td>
<td>HP or VP</td>
<td>At large height or with absorber on ground</td>
</tr>
<tr>
<td>4 FAR</td>
<td>5.3.2</td>
<td>9.2.2</td>
<td>30 to 300</td>
<td>Biconical, hybrid, dipole</td>
<td>HP</td>
<td></td>
</tr>
<tr>
<td>5 REFTS CALTS</td>
<td>4.7</td>
<td>9.3</td>
<td>30 to 300</td>
<td>Biconical, hybrid</td>
<td>VP</td>
<td></td>
</tr>
<tr>
<td>6 Free space</td>
<td>6.1</td>
<td>9.4.2</td>
<td>200 to 18000</td>
<td>LPDA, hybrid, horn</td>
<td>VP</td>
<td></td>
</tr>
<tr>
<td>7 Free space</td>
<td>6.2</td>
<td>9.4.4</td>
<td>200 to 18000</td>
<td>LPDA, hybrid, horn</td>
<td>VP (or HP)</td>
<td>With absorber on ground</td>
</tr>
<tr>
<td>8 FAR</td>
<td>5.3.3</td>
<td>9.5</td>
<td>1000 to 18000</td>
<td>Horn, LPDA</td>
<td>HP or VP</td>
<td></td>
</tr>
<tr>
<td>9 FAR</td>
<td>5.3.2</td>
<td>9.2 and 9.4</td>
<td>140 to 1000</td>
<td>LPDA, hybrid</td>
<td>HP or VP</td>
<td></td>
</tr>
<tr>
<td>10 CALTS</td>
<td>4.6</td>
<td>B.4, B.5</td>
<td>30 to 300</td>
<td>Biconical, dipole</td>
<td>HP</td>
<td></td>
</tr>
<tr>
<td>11 Transfer of properties of a validated site to a site not validated by methods in other clauses</td>
<td>7.1</td>
<td>A.9.4</td>
<td>30 and above</td>
<td>Any, but not monopole or loop</td>
<td>HP or VP</td>
<td>Use primarily for SAM and FAR, for particular antenna types and frequencies, except 5.3</td>
</tr>
</tbody>
</table>

a A CALTS is well specified as being free of reflecting obstacles, and if the antenna supports have negligible reflections the ground plane itself is likely to provide results that agree with the theoretical performance to better than 0.5 dB. However for a Semi Anechoic Chamber (SAC), it is important that the entire allowed acceptance criterion of 1 dB is not taken up by wall reflections, leaving no latitude for other uncertainty components such as reducing reflections from masts and cables.
SPECFICATION FOR RADIO DISTURBANCE AND IMMUNITY
MEASURING APPARATUS AND METHODS –

Part 1-5: Radio disturbance and immunity measuring apparatus –
Antenna calibration sites and reference test sites for 5 MHz to 18 GHz

1 Scope

This part of CISPR 16 specifies the requirements for calibration sites in the frequency range 5 MHz to 18 GHz used to perform antenna calibrations according to CISPR 16-1-6. It also specifies the requirements for reference test sites (REFTS) that are used for the validation of compliance test sites (COMTS) in the frequency range 30 MHz to 1 000 MHz according to CISPR 16-1-4.

It has the status of a basic EMC standard in accordance with IEC Guide 107, Electromagnetic compatibility – Guide to the drafting of electromagnetic compatibility publications.

Measurement instrumentation specifications are given in CISPR 16-1-1 and CISPR 16-1-4. Further information and background on uncertainties in general is given in CISPR 16-4, which can also be helpful in establishing uncertainty estimates for the calibration processes of antennas and site validation measurements.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

CISPR 16-1-4:2010/AMD 1:2012

IEC 60050 (all parts), International Electrotechnical Vocabulary (available at <http://www.electropedia.org>)

3 Terms, definitions and abbreviations

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 60050, as well as the following apply.

NOTE Full terms for abbreviations not already given in 3.1 are listed in 3.2.

1 Numbers in square brackets refer to the bibliography.