Maritime works –
Part 5: Code of practice for dredging and land reclamation
Contents

Foreword v

1 Scope 1

2 Normative references 1

3 Terms and definitions 2

4 Planning of dredging works 4
4.1 Main components 5
4.2 Project planning 5
4.3 Procurement of services 7
4.4 Engineering performance criteria 8

5 Dredging environmental design 14
5.1 General 14
5.2 Sustainable development 14
5.3 Potential impacts 16
5.4 Environmental design process 16
5.5 Use of numerical models for impact prediction 18
5.6 Minimizing environmental impact 19
5.7 Environmental monitoring design 21

6 Site investigation and data collection 24
6.1 General 25
6.2 Geotechnical investigations 26
6.3 Geophysical investigations 30
6.4 Unexploded ordnance (UXO) investigations 31
6.5 Hydrographic surveys 31
6.6 Metocean data collection 33
6.7 Environmental surveys 33
6.8 The human environment 36

7 Dredging plant selection 38
7.1 General 39
7.2 Characteristics of hydraulic dredging plant 40
7.3 Mechanical dredgers 51
7.4 Dredger selection 58

8 Maintenance dredging 62
8.1 General 62
8.2 Plant for maintenance dredging 62
8.3 Infill calculation 62
8.4 Design and planning of maintenance dredging 63
8.5 Methodology 63
8.6 Frequency of maintenance dredging 64
8.7 Soil density and maintenance dredging 64
8.8 Alternative and supplementary strategies 65
8.9 Disposal of material 65

9 Capital dredging 66
9.1 General 66
9.2 Capital dredging plant 66
9.3 Debris 66
9.4 Particular geotechnical conditions 66
9.5 Dredging of naturally well-graded sands 68

10 Rock dredging 68
10.1 General 69
10.2 Direct dredging 69
10.3 Plant for rock dredging 69
10.4 Dredging pre-treated rock 71
10.5 Pre-treatment 72
10.6 Surface blasting 73
10.7 Drilling and blasting 74
10.8 Explosives and initiating systems 79

11 Dredging of materials for reuse 80
11.1 Marine borrow area development 80
11.2 Extraction of materials for aggregates 80
11.3 Land-sourced borrow and quarry development 81

12 Disposal, displacement and beneficial use of dredged material 82
12.1 General 82
12.2 Sediment constituents 83
12.3 Beneficial use 84
12.4 Disposal at sea 84
12.5 Displacement 85

13 Reclamation 88
13.1 Reclamation performance criteria 88
13.2 Site preparation 89
13.3 Placing of land-sourced fills 90
13.4 Use of rockfill 91
13.5 Bunds, revetments and breakwaters 91
13.6 Geotextile containers 93
13.7 Beach and foreshore recharge 95

14 Ground treatment 99
14.1 General 99
14.2 Types of ground treatment 100
14.3 Design process 103
14.4 Performance monitoring 106

15 Management and supervision 107
15.1 Project management 107
15.2 Execution planning phase 107
15.3 Mobilization phase 108
15.4 Early works and site preparation phase 109
15.5 Works implementation phase 109
15.6 Supervision 110
15.7 Health and safety 111
15.8 Environmental 111
15.9 Quality, documentation and reporting 111
15.10 Progress reporting 112
15.11 Site positioning and control 112
15.12 Measurement and testing against design 112
15.13 Dredged area quality control 114
15.14 Bar sweeps 114
15.15 Reclamation quality control 114
15.16 Demobilization phase 115

Annexes
Annex A (informative) Seismic geophysical investigation techniques 118

Bibliography 120

List of figures
Figure 1 – Scheme environmental design process 17
Figure 2 – Mitigation hierarchy 19
Figure 3 – Modern trailing suction hopper dredger 40
Figure 4 – Modern large cutter suction dredger fitted with submerged ladder pump and spud carriage 42
Figure 5 – Rock cutters 45
Figure 6 – Dustpan dredger with suction head arrangement 46
Figure 7 – Water injection dredging (WID) 47
Figure 8 – Illustration of jet pump with suction intake incorporating water jetting arrangement 49
Figure 9 – Illustration of air lift principle 50
Figure 10 – Small self-propelled grab hopper dredger with single crane 51
Figure 11 – Large grab pontoon dredger with all winch mooring system 53
Figure 12 – Hydraulic backhoe dredger 55
Figure 13 – Deployment method for bed leveller and typical bed leveller assembly 57
Figure 14 – Typical over-side three-tower floating drilling pontoon with winch location 75
Figure 15 – Self elevating H configuration drilling platform 76
Figure 16 – Common pre-treatment drilling patterns and terminology 77
Figure 17 – Example of the need to extend drilling and pre-treatment beyond the depth and extent of required dredging 78
Figure 18 – Illustration of sequence of the overburden drilling method 78
Figure 19 – Reclamation – Typical edge details 92
Figure 20 – Long section showing geotextile tube being filled, inlet at left with two vents towards the right-hand end 93
Figure 21 – Typical section of a geotextile tube with two flaps forming scour aprons 93
Figure 22 – Geometric properties of a geotextile tube 94
Figure 23 – Typical arrangements for placing geotextile tubes 94
Figure 24 – Example grading envelope with examples of acceptable and unacceptable sediments 97
Figure 25 – Vibro equipment working off barges/pontoons during a reclamation project 104
Figure 26 – Range of soils suitable for treatment by vibrocompaction and vibro stone column techniques 105

List of tables
Table 1 – Maintenance dredging – General performance criteria 9
Table 2 – General capital dredging – General performance criteria 9
Table 3 – Capital dredging for navigation – Performance criteria 10
Table 4 – Capital dredging for foundations – Performance criteria 10
Table 5 – Capital dredging for pipe trenches – Performance criteria 10
Table 6 – Dredging for seabed materials – Performance criteria 11
Table 7 – Disposal of excess materials – Performance criteria 11
Table 8 – Reclamation – Performance criteria 12
Table 9 – Typical working vertical accuracy for dredging plant under various site conditions 13
Table 10 – Sampling and investigation methods for dredging purposes 28
Table 11 – Guidance on the selection of plant for maintenance dredging 59
Table 12 – Guidance on the selection of plant for capital dredging 60
Table 13 – Guidance on the selection of plant for land reclamation and beach recharge 61
Table 14 – Characteristics of dredgers able to dredge some rocks without pre-treatment 71
Table 15 – Optimum fragmentation and bulking of rock normally required to allow satisfactory dredging 72
Table 16 – Geometric properties of geotextile tubes based on the diameter of the basic geotextile tube 94
Table 17 – Beach slope – Approximate sediment size trends for natural beaches 97
Table 18 – Overview of reclamation properties to be measured and monitored during construction 116
Table A.1 – Indicative penetration depths for a range of soils 119
Foreword

Publishing information
This part of BS 6349 is published by BSI Standards Limited, under licence from The British Standards Institution, and came into effect on 31 December 2016. It was prepared by Technical Committee CB/502, Maritime works. A list of organizations represented on this committee can be obtained on request to its secretary.

Supersession
This part of BS 6349 supersedes BS 6459-5:1991, which is withdrawn.

Relationship with other publications
BS 6349 is published in the following parts:

- Part 1-1: General – Code of practice for planning and design for operations;
- Part 1-3: General – Code of practice for geotechnical design;
- Part 1-4: General – Code of practice for materials;
- Part 2: Code of practice for the design of quay walls, jetties and dolphins;
- Part 3: Design of dry docks, locks, slipways and shipbuilding berths, shiplifts and dock and lock gates;
- Part 4: Code of practice for design of fendering and mooring systems;
- Part 5: Code of practice for dredging and land reclamation;
- Part 6: Design of inshore moorings and floating structures;
- Part 7: Guide to the design and construction of breakwaters;
- Part 8: Code of practice for the design of Ro-Ro ramps, linkspans and walkways.

This part of BS 6349 is related to prEN 16907-6, which is currently in preparation.

Information about this document
This is a full revision of the standard, and introduces the following principal changes:

- substantial changes to reflect scientific and technological advances since 1991;
- changes to take into account new and revised legislation;
- restructure of text to better facilitate use of the standard;
- changes for consistency with the updated suite of BS 6349 standards that have been revised to take account of Eurocodes.

Use of this document
As a code of practice, this part of BS 6349 takes the form of guidance and recommendations. It should not be quoted as if it were a specification and particular care should be taken to ensure that claims of compliance are not misleading.

Any user claiming compliance with this part of BS 6349 is expected to be able to justify any course of action that deviates from its recommendations.
Presentational conventions

The provisions of this standard are presented in roman (i.e. upright) type. Its recommendations are expressed in sentences in which the principal auxiliary verb is “should”.

Commentary, explanation and general informative material is presented in smaller italic type, and does not constitute a normative element.

Where words have alternative spellings, the preferred spelling of the Shorter Oxford English Dictionary is used (e.g. “organization” rather than “organisation”).

Contractual and legal considerations

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with a British Standard cannot confer immunity from legal obligations.
1 Scope
This part of BS 6349 gives recommendations for dredging and land reclamation works.

In addition, this part of BS 6349 outlines environmental assessment procedures and criteria in relation to the UK that are considered illustrative of similar good practice in many international jurisdictions.

2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

Standards publications
ASTM D1586, Standard test method for standard penetration test (SPT) and split-barrel sampling of soils
ASTM D2167, Standard test method for density and unit weight of soil in place by the rubber balloon method
ASTM D2488, Standard practice for description and identification of soils (visual-manual procedure)
ASTM D4253, Standard test methods for maximum index density and unit weight of soils using a vibratory table
ASTM D4254, Standard test methods for minimum index density and unit weight of soils and calculation of relative density
ASTM D7382, Standard test methods for determination of maximum dry unit weight and water content range for effective compaction of granular soils using a vibrating hammer
BS 1377 (all parts), Methods for test for soils for civil engineering purposes
BS 5607, Code of practice for the safe use of explosives in the construction industry
BS 5930:2015, Code of practice for ground investigations
BS 6031, Code of practice for earthworks
BS 6349-1-1, Maritime works – Part 1-1: General – Code of practice for planning and design for operations

BS EN 933-3, Tests for geometrical properties of aggregates – Part 3: Determination of particle shape – Flakiness index
BS EN 933-4, Tests for geometrical properties of aggregates – Part 4: Determination of particle shape – Shape index
BS EN ISO 22476 (all parts), Geotechnical investigation and testing – Field testing

Other publications

1) This part of BS 6349 gives informative references to BS 6349-1-1:2013.