Special Notes

API publications necessarily address problems of a general nature. With respect to particular circumstances, local, state, and federal laws and regulations should be reviewed.

Neither API nor any of API's employees, subcontractors, consultants, committees, or other assignees make any warranty or representation, either express or implied, with respect to the accuracy, completeness, or usefulness of the information contained herein, or assume any liability or responsibility for any use, or the results of such use, of any information or process disclosed in this publication. Neither API nor any of API's employees, subcontractors, consultants, or other assignees represent that use of this publication would not infringe upon privately owned rights.

API publications may be used by anyone desiring to do so. Every effort has been made by the Institute to ensure the accuracy and reliability of the data contained in them; however, the Institute makes no representation, warranty, or guarantee in connection with this publication and hereby expressly disclaims any liability or responsibility for loss or damage resulting from its use or for the violation of any authorities having jurisdiction with which this publication may conflict.

API publications are published to facilitate the broad availability of proven, sound engineering and operating practices. These publications are not intended to obviate the need for applying sound engineering judgment regarding when and where these publications should be utilized. The formulation and publication of API publications is not intended in any way to inhibit anyone from using any other practices.

Any manufacturer marking equipment or materials in conformance with the marking requirements of an API standard is solely responsible for complying with all the applicable requirements of that standard. API does not represent, warrant, or guarantee that such products do in fact conform to the applicable API standard.

 Classified areas may vary depending on the location, conditions, equipment, and substances involved in any given situation. Users of this Standard should consult with the appropriate authorities having jurisdiction.

Users of this Standard should not rely exclusively on the information contained in this document. Sound business, scientific, engineering, and safety judgment should be used in employing the information contained herein.

API is not undertaking to meet the duties of employers, manufacturers, or suppliers to warn and properly train and equip their employees, and others exposed, concerning health and safety risks and precautions, nor undertaking their obligations to comply with authorities having jurisdiction.

Information concerning safety and health risks and proper precautions with respect to particular materials and conditions should be obtained from the employer, the manufacturer or supplier of that material, or the material safety data sheet.

Work sites and equipment operations may differ. Users are solely responsible for assessing their specific equipment and premises in determining the appropriateness of applying the Standard. At all times users should employ sound business, scientific, engineering, and judgment safety when using this Standard.

The examples in this document are merely examples for illustration purposes only. [Each company should develop its own approach.] They are not to be considered exclusive or exhaustive in nature. API makes no warranties, express or implied for reliance on or any omissions from the information contained in this document.

Users of the instructions in this document should not rely exclusively on the information contained in this document. Sound business, scientific, engineering, and safety judgment should be used in employing the information contained herein.

Where applicable, authorities having jurisdiction should be consulted.

Work sites and equipment operations may differ. Users are solely responsible for assessing their specific equipment and premises in determining the appropriateness of applying the instructions. At all times users should employ sound business, scientific, engineering, and judgment safety when using this Standard.

All rights reserved. No part of this work may be reproduced, translated, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the publisher. Contact the Publisher, API Publishing Services, 1220 L Street, NW, Washington, DC 20005.

Copyright © 2016 American Petroleum Institute
Foreword

Nothing contained in any API publication is to be construed as granting any right, by implication or otherwise, for the manufacture, sale, or use of any method, apparatus, or product covered by letters patent. Neither should anything contained in the publication be construed as insuring anyone against liability for infringement of letters patent.

Shall: As used in a standard, “shall” denotes a minimum requirement in order to conform to the standard.

Should: As used in a standard, “should” denotes a recommendation or that which is advised but not required in order to conform to the standard.

May: As used in a standard, “may” denotes a course of action permissible within the limits of a standard.

Can: As used in a standard, “can” denotes a statement of possibility or capability.

This document was produced under API standardization procedures that ensure appropriate notification and participation in the developmental process and is designated as an API standard. Questions concerning the interpretation of the content of this publication or comments and questions concerning the procedures under which this publication was developed should be directed in writing to the Director of Standards, American Petroleum Institute, 1220 L Street, NW, Washington, DC 20005. Requests for permission to reproduce or translate all or any part of the material published herein should also be addressed to the director.

Generally, API standards are reviewed and revised, reaffirmed, or withdrawn at least every five years. A one-time extension of up to two years may be added to this review cycle. Status of the publication can be ascertained from the API Standards Department, telephone (202) 682-8000. A catalog of API publications and materials is published annually by API, 1220 L Street, NW, Washington, DC 20005.

Suggested revisions are invited and should be submitted to the Standards Department, API, 1220 L Street, NW, Washington, DC 20005, standards@api.org.
Contents

2 Slip Stream Sample Loop Sampling System ... 7
3 Sample Volume Regulator .. 7
4 Typical Portable Installation .. 8
5 Linefill .. 8
6 Probe Design .. 8
7 Sample Probe and Slip Stream Take-Off Probe Location for Vertical or Horizontal Pipe. ... 9
8 Sample Probe with Multiple Containers .. 11
9 Sampling Components and Related Tests ... 13
10 Flowchart ... 14
11 Probe Chamfer Design .. 16
12 Beveled Probe .. 17
13 Sequence of Acceptance Test Activities ... 20
A1.1 Number of Samples versus Margin of Error ... 27
A2.1 Comparison of Mixing Devices ... 28
A3.1 Portable Sampler Operational Data Confirmation of Mixing and Flow Sensor Velocity. ... 34
A3.2 Portable Sampler Operational Data Confirmation of Free Water Sampled 35
A3.3 Typical Piping Schematic to be Recorded for Discharges ... 36
A3.4 Typical Piping Schematic to be Recorded for Loading .. 37
A4.1 Multi Probe for Profile Testing .. 38
A5.1 Sampler Acceptance Test Data Sheet .. 40
X1.1 Design Data Sheet for Automatic Sampling System .. 43
X2.1 Comparison of Percent Sediment and Water versus Unloading Time Period 44

Tables
1 Sample Frequency Variables ... 11
2 Container Size when Used In Different Applications .. 18
3 Allowable Deviations for the Single and Dual Sampler Water Injection Acceptance Tests (Volume by Percent) ... 19
A1.1 Symbols ... 25
A1.2 Samples versus Margin of Error .. 26
A2.1 Symbols Used in Annex A2 ... 29
A2.2 Dispersion Factors .. 29
A2.3 Suggested Resistance Coefficients, K ... 29
A2.4 Dissipation Energy Factors (β) ... 30
A2.5 Dissipation Energy Relationships .. 30
A4.1 Typical Profile Test Data, in Percent by Volume of Water .. 38
A4.2 Calculation of Point Averages and Deviation. .. 39
INTRODUCTION

The previous version of the automatic sampling practice described the design, installation, testing, and operation of automated equipment for the extraction of representative samples from the flowing stream and storing mainly for crude oil.

This practice is a performance-based standard. It still includes the design, installation, testing, and operation of automated equipment for extraction of representative samples. It also includes the testing and proving of a sampling system in the field under actual operating conditions to ensure that the equipment, installation, and operating procedures produce representative samples. The acceptance criteria for custody transfer are covered in this practice. This practice does not address how to sample crude at temperatures below the freezing point of water. Extensive revisions have been made to the prior version of D4177 (API MPMS Chapter 8.2).

This practice also provides guidance for periodic verification of the sampling system.

This practice is separated into three parts:

General—Sections 5 – 17 (Part I) are currently applicable to crude oil and refined products. Review this section before designing or installing any automatic sampling system.

Crude Oil Sampling—Section 18 (Part II) contains additional information required to complete the design, testing, and monitoring of a crude oil sampling system.

Refined Product Sampling—Section 19 (Part III) contains additional information required to complete the design of a refined product sampling system.

A representative sample is “A portion extracted from the total volume that contains the constituents in the same proportions that are present in that total volume.” Representative samples are required for the determination of chemical and physical properties that are used to establish standard volumes, prices, and compliance with commercial and regulatory specifications.

The process of obtaining a representative sample consists of the following: the physical equipment, the correct matching of that equipment to the application, the adherence to procedures by the operator(s) of that equipment, and the proper handling and analysis.

1. Scope*

1.1 This practice describes general procedures and equipment for automatically obtaining samples of liquid petroleum and petroleum products, crude oils, and intermediate products from the sample point into the primary container. This practice also provides additional specific information about sample container selection, preparation, and sample handling. If sampling is for the precise determination of volatility, use Practice D5842 (API MPMS Chapter 8.4) in conjunction with this practice. For sample mixing and handling, refer to Practice D5854 (API MPMS Chapter 8.3). This practice does not cover sampling of electrical insulating oils and hydraulic fluids.

*A Summary of Changes section appears at the end of this standard
1.2 Table of Contents:

<table>
<thead>
<tr>
<th>Section</th>
<th>INTRODUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td>1</td>
</tr>
<tr>
<td>Terminology</td>
<td>3</td>
</tr>
<tr>
<td>Significance and Use</td>
<td>4</td>
</tr>
<tr>
<td>PART I—GENERAL</td>
<td></td>
</tr>
<tr>
<td>Representative Sampling Components</td>
<td>5</td>
</tr>
<tr>
<td>Design Criteria</td>
<td>6</td>
</tr>
<tr>
<td>Automatic Sampling Systems</td>
<td>7</td>
</tr>
<tr>
<td>Sampling Location</td>
<td>8</td>
</tr>
<tr>
<td>Mixing of the Flowing Stream</td>
<td>9</td>
</tr>
<tr>
<td>Proportionality</td>
<td>10</td>
</tr>
<tr>
<td>Sample Extractor Grab Volume</td>
<td>11</td>
</tr>
<tr>
<td>Containers</td>
<td>12</td>
</tr>
<tr>
<td>Sample Handling and Mixing</td>
<td>13</td>
</tr>
<tr>
<td>Control Systems</td>
<td>14</td>
</tr>
<tr>
<td>Sample System Security</td>
<td>15</td>
</tr>
<tr>
<td>System Proving (Performance Acceptance Tests)</td>
<td>16</td>
</tr>
<tr>
<td>Performance Monitoring</td>
<td>17</td>
</tr>
<tr>
<td>PART II—CRUDE OIL</td>
<td></td>
</tr>
<tr>
<td>Crude Oil</td>
<td>18</td>
</tr>
<tr>
<td>PART III—REFINED PRODUCTS</td>
<td></td>
</tr>
<tr>
<td>Refined Products</td>
<td>19</td>
</tr>
<tr>
<td>APPENDIXES</td>
<td></td>
</tr>
<tr>
<td>Calculations of the Margin of Error based on Number of Sample Grabs</td>
<td>Annex A1</td>
</tr>
<tr>
<td>Theoretical Calculations for Selecting the Sampler Probe Location</td>
<td>Annex A2</td>
</tr>
<tr>
<td>Performance Criteria for Portable Sampling Units</td>
<td>Annex A3</td>
</tr>
<tr>
<td>Profile Performance Test</td>
<td>Annex A4</td>
</tr>
<tr>
<td>Sampler Acceptance Test Data</td>
<td>Annex A5</td>
</tr>
<tr>
<td>APPENDIXES</td>
<td></td>
</tr>
<tr>
<td>Design Data Sheet for Automatic Sampling System</td>
<td>Appendix X1</td>
</tr>
<tr>
<td>Comparisons of Percent Sediment and Water versus Unloading Time Period</td>
<td>Appendix X2</td>
</tr>
</tbody>
</table>

1.3 Units—The values stated in either SI units or US Customary (USC) units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. Except where there is no direct SI equivalent, such as for National Pipe Threads/diameters, or tubing.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

- D4007 Test Method for Water and Sediment in Crude Oil by the Centrifuge Method (Laboratory Procedure)
- D4840 Guide for Sample Chain-of-Custody Procedures
- D4928 Test Method for Water in Crude Oils by Coulometric Karl Fischer Titration
- D5842 Practice for Sampling and Handling of Fuels for Volatility Measurement

2.2 API Standards:

- MPMS Chapter 3 Tank Gauging
- MPMS Chapter 4 Proving Systems
- MPMS Chapter 5 Metering
- MPMS Chapter 8.3 Practice for Mixing and Handling of Liquid Samples of Petroleum and Petroleum Products (ASTM Practice D5854)
- MPMS Chapter 8.4 Practice for Manual Sampling and Handling of Fuels for Volatility Measurement (ASTM Practice D5842)
- MPMS Chapter 10 Sediment and Water
- MPMS Chapter 13 Statistical Aspects of Measuring and Sampling
- MPMS Chapter 20 Production Allocation Measurement for High Water Content Crude Oil Sampling
- MPMS Chapter 21 Flow Measurement Using Electronic Metering Systems

2.3 ISO Standards:

NOTE 1—See the Bibliography at the end of this standard for important historical references.

3. Terminology

3.1 Definitions of Terms Specific to This Standard:

3.1.1 automatic sampling system, n—fluid sampling system that consists of: (a) flowing fluid stream conditioning, if required; (b) a means of automatically extracting a representative sample; (c) pacing of the sample extraction in a flow or time proportional manner; and (d) delivering of each extracted sample to a sample container or an analyzer.

3.1.1.1 Discussion—The system consists of a sample extractor with an associated controller and flow-measuring or timing device, collectively referred to as an automatic sampler or auto-sampler. In addition, the system may include a flow conditioner, slipstream, sample probe, and sample conditioning.

3.1.1.2 Discussion—Systems may deliver the sample directly to an analytical device or may accumulate a composite sample for offline analysis, in which case, the system includes sample mixing and handling and a primary sample container.

3.1.1.3 Discussion—Automatic sampling systems may be used for liquids.

3.1.2 batch, n—discrete shipment of commodity defined by a specified quantity, a time interval, or quality.

3.1.3 component testing, n—process of individually testing the components of a system.

3.1.4 dead volume, n—in sampling, the volume trapped between the extraction point and the primary sample container.

3.1.4.1 Discussion—This represents potential for contamination between batches.