PLEASE NOTE:

The information contained in this document was obtained from sources believed to be reliable and is based on technical information and experience currently available from members of the Compressed Gas Association, Inc. and others. However, the Association or its members, jointly or severally, make no guarantee of the results and assume no liability or responsibility in connection with the information or suggestions herein contained. Moreover, it should not be assumed that every acceptable commodity grade, test or safety procedure or method, precaution, equipment or device is contained within, or that abnormal or unusual circumstances may not warrant or suggest further requirements or additional procedure.

This document is subject to periodic review, and users are cautioned to obtain the latest edition. The Association invites comments and suggestions for consideration. In connection with such review, any such comments or suggestions will be fully reviewed by the Association after giving the party, upon request, a reasonable opportunity to be heard. Proposed changes may be submitted via the Internet at our web site, www.cganet.com.

This document should not be confused with federal, state, provincial, or municipal specifications or regulations; insurance requirements; or national safety codes. While the Association recommends reference to or use of this document by government agencies and others, this document is purely voluntary and not binding unless adopted by reference in regulations.

A listing of all publications, audiovisual programs, safety and technical bulletins, and safety posters is available via the Internet at our website at www.cganet.com. For more information contact CGA at Phone: 703-788-2700, ext. 799. E-mail: customerservice@cganet.com.

NOTE—Technical changes from the previous edition are underlined.
Contents

1 Introduction ... 1
2 Scope ... 1
3 Definitions ... 1
4 Properties of ammonia ... 1
5 Safety considerations ... 2
 5.1 Physiological effects .. 2
 5.2 Personal protective equipment .. 2
 5.3 Personnel safety .. 2
6 Required reagents and equipment ... 2
 6.1 Reagents ... 2
 6.2 Equipment ... 2
7 Procedure ... 5
8 Anhydrous ammonia evaporation factor ... 6
9 Calculation .. 7
10 References ... 7
11 Additional references .. 8

Figures

Figure 1—Glass residue tube ... 3
Figure 2—Ammonia sampling device ... 4
Figure 3—Cap device ... 4
Figure 4—Flow regulator assembly .. 4
Figure 5—Residue tube rack .. 5

Table

Table 1—Anhydrous ammonia evaporation factors .. 7
This page is intentionally blank.
1 Introduction

Anhydrous ammonia shipped in U.S. Department of Transportation (DOT) Specification MC-330 or MC-331 cargo tanks constructed of quenched and tempered steel (QT) shall have a minimum water content of 0.2% by weight. Except as provided for in regulations, shippers or carriers are required to perform periodic analyses for the prescribed water content in the ammonia. See Title 49 of the U.S. Code of Federal Regulations (49 CFR) 173.315(a) Note 14 and 173.315(1) [1].

2 Scope

This publication is intended to provide shippers and carriers with a guideline method of analysis to determine the presence in anhydrous ammonia of the prescribed minimum water content of 0.2% by weight as required by DOT regulations. Lack of the appropriate percentage of water in single loads of ammonia has been found by experience to result in extensive stress corrosion damage to the QT cargo tanks. This method is intended for field use and thus the equipment and procedure selected may vary slightly from that used under laboratory conditions. Other proven methods of determining water content are acceptable.

3 Definitions

For the purpose of this publication, the following definitions apply.

3.1 Publication terminology

3.1.1 Shall
Indicates that the procedure is mandatory. It is used wherever the criterion for conformance to specific recommendations allows no deviation.

3.1.2 Should
Indicates that a procedure is recommended.

3.1.3 May
Indicates that the procedure is optional.

3.1.4 Will
Is used only to indicate the future, not a degree of requirement.

3.1.5 Can
Indicates a possibility or ability.

4 Properties of ammonia

At room temperatures and atmospheric pressure, anhydrous ammonia is a pungent, colorless gas. Ammonia vapor at a pressure of 1 atmosphere (101.325 kPa) and a temperature of 32 °F (0 °C) is lighter than air, having a relative density of 0.5970. The sharp, pungent odor of ammonia serves as a warning signal that very small concentrations of ammonia vapor in air are readily detectable.

1 References are shown by bracketed numbers and are listed in order of appearance in the reference section.

2 kPa shall indicate gauge pressure unless otherwise noted as (kPa, abs) for absolute pressure or (kPa, differential) for differential pressure. All kPa values are rounded off per CGA P-11, Metric Practice Guide for the Compressed Gas Industry [2].