Recommended Practice for Assessment and Management of Cracking in Pipelines

API RECOMMENDED PRACTICE 1176
FIRST EDITION, JULY 2016
Special Notes

API publications necessarily address problems of a general nature. With respect to particular circumstances, local, state, and federal laws and regulations should be reviewed.

Neither API nor any of API's employees, subcontractors, consultants, committees, or other assignees make any warranty or representation, either express or implied, with respect to the accuracy, completeness, or usefulness of the information contained herein, or assume any liability or responsibility for any use, or the results of such use, of any information or process disclosed in this publication. Neither API nor any of API's employees, subcontractors, consultants, or other assignees represent that use of this publication would not infringe upon privately owned rights.

API publications may be used by anyone desiring to do so. Every effort has been made by the Institute to assure the accuracy and reliability of the data contained in them; however, the Institute makes no representation, warranty, or guarantee in connection with this publication and hereby expressly disclaims any liability or responsibility for loss or damage resulting from its use or for the violation of any authorities having jurisdiction with which this publication may conflict.

API publications are published to facilitate the broad availability of proven, sound engineering and operating practices. These publications are not intended to obviate the need for applying sound engineering judgment regarding when and where these publications should be utilized. The formulation and publication of API publications is not intended in any way to inhibit anyone from using any other practices.

Any manufacturer marking equipment or materials in conformance with the marking requirements of an API standard is solely responsible for complying with all the applicable requirements of that standard. API does not represent, warrant, or guarantee that such products do in fact conform to the applicable API standard.
Foreword

Nothing contained in any API publication is to be construed as granting any right, by implication or otherwise, for the manufacture, sale, or use of any method, apparatus, or product covered by letters patent. Neither should anything contained in the publication be construed as insuring anyone against liability for infringement of letters patent.

Shall: As used in a standard, “shall” denotes a minimum requirement in order to conform to the specification.

Should: As used in a standard, “should” denotes a recommendation or that which is advised but not required in order to conform to the specification.

This document was produced under API standardization procedures that ensure appropriate notification and participation in the developmental process and is designated as an API standard. Questions concerning the interpretation of the content of this publication or comments and questions concerning the procedures under which this publication was developed should be directed in writing to the Director of Standards, American Petroleum Institute, 1220 L Street, NW, Washington, DC 20005. Requests for permission to reproduce or translate all or any part of the material published herein should also be addressed to the director.

Generally, API standards are reviewed and revised, reaffirmed, or withdrawn at least every five years. A one-time extension of up to two years may be added to this review cycle. Status of the publication can be ascertained from the API Standards Department, telephone (202) 682-8000. A catalog of API publications and materials is published annually by API, 1220 L Street, NW, Washington, DC 20005.

Suggested revisions are invited and should be submitted to the Standards Department, API, 1220 L Street, NW, Washington, DC 20005, standards@api.org.
Contents

1 Scope ... 1
2 Normative References .. 1
3 Terms, Definitions, Acronyms, and Abbreviations ... 2
 3.1 Terms and Definitions ... 2
 3.2 Acronyms and Abbreviations ... 10
4 Guiding Principles .. 12
5 Crack Management .. 13
 5.1 General Considerations .. 13
 5.2 Elements of Crack Management to Incorporate into Integrity Management Plans 14
6 Threat Mechanisms Associated with Cracking .. 16
 6.1 General .. 16
 6.2 Environmentally Assisted Cracking ... 16
 6.3 Manufacturing Defects Associated with Longitudinal Seams ... 19
 6.4 Mechanical Damage .. 22
7 Fitness-For-Service of Crack-like Flaws ... 25
 7.1 Assessment Methods ... 25
 7.2 Input Parameters ... 25
8 Crack Growth .. 27
 8.1 Pressure Cycling Analysis .. 27
 8.2 Fatigue Growth ... 30
 8.3 Stress Corrosion Cracking and Corrosion Fatigue Growth .. 33
 8.4 Remaining Life .. 36
 8.5 Reassessment Interval Determination ... 36
9 Gathering, Reviewing, and Integrating Data ... 36
 9.1 General Considerations .. 36
 9.2 Threat Interaction ... 37
10 Methods of Integrity Assessment ... 38
 10.1 General .. 38
 10.2 In-line Inspection (ILI) .. 38
 10.3 Hydrostatic Testing .. 39
 10.4 In-line Inspection and Hydrostatic Testing .. 39
11 In-line Inspection for Integrity Assessment ... 41
 11.1 General .. 41
 11.2 In-line Inspection Tool Types .. 42
 11.3 ILI Tool Utilization Considerations .. 46
 11.4 Capabilities of In-line Inspection Tools for Axial Cracks ... 49
 11.5 Verification of ILI Results .. 49
 11.6 Crack Tool Response Methodology ... 51
 11.7 Crack ILI Response Criteria .. 60
12 Hydrostatic Testing .. 62
 12.1 General .. 62
 12.2 Minimum Test Pressure-to-Operating Pressure Ratio ... 63
 12.3 Minimum Hold Time ... 64
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4 Spike Testing</td>
<td>64</td>
</tr>
<tr>
<td>12.5 Pressure Reversals</td>
<td>65</td>
</tr>
<tr>
<td>13 Stress Corrosion Cracking Direct Assessment</td>
<td>66</td>
</tr>
<tr>
<td>14 In-the-Ditch Assessment</td>
<td>67</td>
</tr>
<tr>
<td>14.1 General</td>
<td>67</td>
</tr>
<tr>
<td>14.2 Assessment of SCC and Other Pipe Body Cracks</td>
<td>68</td>
</tr>
<tr>
<td>14.3 Assessment of Longitudinal Seam Cracks</td>
<td>69</td>
</tr>
<tr>
<td>14.4 Assessment of Surface Breaking Laminations</td>
<td>70</td>
</tr>
<tr>
<td>15 Repair Methods</td>
<td>71</td>
</tr>
<tr>
<td>15.1 General</td>
<td>71</td>
</tr>
<tr>
<td>15.2 Replace as Cylinder</td>
<td>72</td>
</tr>
<tr>
<td>15.3 Grinding</td>
<td>72</td>
</tr>
<tr>
<td>15.4 Deposition of Weld Metal</td>
<td>72</td>
</tr>
<tr>
<td>15.5 Full Encirclement Sleeves</td>
<td>72</td>
</tr>
<tr>
<td>15.6 Composite Sleeves</td>
<td>72</td>
</tr>
<tr>
<td>15.7 Compression Sleeves</td>
<td>73</td>
</tr>
<tr>
<td>15.8 Mechanical Bolt-on Clamps</td>
<td>73</td>
</tr>
<tr>
<td>15.9 Hot Tapping</td>
<td>73</td>
</tr>
<tr>
<td>15.10 Fittings</td>
<td>73</td>
</tr>
<tr>
<td>16 Preventive and Mitigative</td>
<td>73</td>
</tr>
<tr>
<td>16.1 Mitigating Transit Fatigue</td>
<td>73</td>
</tr>
<tr>
<td>16.2 Reevaluation of Pressure Data</td>
<td>74</td>
</tr>
<tr>
<td>16.3 Managing of Pressure Cycles</td>
<td>74</td>
</tr>
<tr>
<td>16.4 Stress Corrosion Cracking</td>
<td>74</td>
</tr>
<tr>
<td>17 Crack Management Performance Measures</td>
<td>76</td>
</tr>
<tr>
<td>17.1 General</td>
<td>76</td>
</tr>
<tr>
<td>17.2 Performance Measures by Crack Threat</td>
<td>76</td>
</tr>
<tr>
<td>17.3 Performance Measures by Crack Assessment Method</td>
<td>76</td>
</tr>
<tr>
<td>Annex A (normative) SCC Additional Information</td>
<td>79</td>
</tr>
<tr>
<td>Annex B (normative) Prioritization for Threats Associated with ERW and EFW Pipe</td>
<td>86</td>
</tr>
<tr>
<td>Annex C (normative) Assessment Methods for Crack-like Flaws</td>
<td>88</td>
</tr>
<tr>
<td>Annex D (informative) Yield Strength and Tensile Strength</td>
<td>93</td>
</tr>
<tr>
<td>Annex E (informative) Toughness</td>
<td>96</td>
</tr>
<tr>
<td>Annex F (informative) Hydrogen Effects</td>
<td>103</td>
</tr>
<tr>
<td>Annex G (informative) Fatigue C and n Values</td>
<td>104</td>
</tr>
<tr>
<td>Annex H (normative) Prediction of Crack Growth with Consideration of Variable Loading Conditions on Oil and Gas Pipelines in Near-neutral pH Environments</td>
<td>106</td>
</tr>
<tr>
<td>Annex I (informative) UT and Magnetic ILI Technology</td>
<td>111</td>
</tr>
<tr>
<td>Annex J (informative) Capabilities of In-line Inspection Tools for Specific Types of Axial Cracks and Anomalies</td>
<td>119</td>
</tr>
<tr>
<td>Annex K (informative) In-the-Ditch Technology</td>
<td>123</td>
</tr>
</tbody>
</table>
Contents

K.3 Typical Inspection Result for 2 m of Anomaly-free Seam Weld ... 125
K.4 Typical Inspection for Two Anomalies—Requires Additional Analysis 125
K.5 Principle of a Sector Scan ... 126
K.6 Imaging a Crack at the Full-vee Path Using a Sector Scan .. 126
K.7 Focused Beam Can be Attained at the Three-fourths-vee Path—Entire Heat-affected Zone Is Assessed ... 126
K.8 Dense Overlap of Sector Scans Circumferentially Indexed by 3 mm (0.12 in.) 127
K.9 Example of Orthogonal Views ... 128
K.10 Example of Full Field Inversion of a Weld .. 128
L.1 ILI Response Protocol—Example ... 129

Tables
1 In-line Inspection Tools and Capabilities for Axial Cracks ... 50
2 Acceptable Crack Repair Methods ... 75
A.1 Simplified Stress Corrosion Cracking Susceptibility Ranking Factors—Illustrative Example (from Beavers [27]) .. 83
A.2 Range of Reported Average Stress Corrosion Cracking Growth Rates 84
D.1 Database Yield Strength (YS) Properties by Grade ... 93
D.2 Database Tensile Strength (TS) Properties by Grade .. 94
E.1 Basic Fracture Toughness Properties and Tests ... 97
E.2 Factors Promoting Favorable Toughness Properties in Steel Line Pipe 98
G.1 Survey Sampling of Line Pipe Fatigue Crack Growth Parameters .. 104
Introduction

This recommended practice (RP) provides guidance to the pipeline industry for assessment and management of defects in the form of cracking, with particular emphasis on contributing threats and the applicable assessments. The RP presents detailed guidance for developing a crack management program. The crack management RP includes the following:

— selecting suitable methods for assessing the condition of the pipeline with respect to applicable forms of cracking;
— establishing response criteria for in-line inspection (ILI) results and determining a pressure reduction where the excavation is delayed beyond the intended timeline;
— determining appropriate hydrostatic test levels and duration;
— calculating the remaining lives of anomalies that may remain in the system so that reassessment can be carried out to reevaluate the anomalies and remediate if necessary;
— developing preventive and mitigative measures for cracking-related conditions in lieu of or in addition to periodic integrity assessment.

This RP is intended for use by operators in planning, implementing, and improving a pipeline crack management program.

Although the genesis and structure of this RP is the API 1160 RP for liquid hazardous pipeline managed under U.S. Department of Transportation (DOT) 49 Code of Federal Regulations (CFR) 195.452 of the U.S. federal pipeline safety regulations, this RP is written as a broadly applicable framework for both hazardous liquid and gas pipelines located in any location or under any jurisdiction. This RP augments API 1160 in aiding the development of integrity management programs that are required under U.S. federal pipeline safety regulations.
Recommended Practice for Assessment and Management of Cracking in Pipelines

1 Scope

This recommended practice (RP) is applicable to any pipeline system used to transport hazardous liquid or natural gas, including those defined in U.S. Title 49 Code of Federal Regulations (CFR) Parts 192 and 195.

This RP is specifically designed to provide the operator with a description of industry-proven practices in the integrity management of cracks and threats that give rise to cracking mechanisms. The guidance is largely targeted to the line pipe along the right-of-way (ROW), but some of the processes and approaches can be applied to pipeline facilities, including pipeline stations, terminals, and delivery facilities associated with pipeline systems. Defects associated with lap-welded (LW) pipe and selective seam weld corrosion (SSWC) are not covered within this RP.

This RP presents the pipeline industry’s understanding of pipeline cracking. Mechanisms that cause cracking are discussed, methods to estimate the failure pressure of cracks are reviewed, and methods to estimate crack growth are presented. Selection of the appropriate integrity assessment method for various types of cracking, operating conditions, and pipeline characteristics is discussed. This RP also reviews current knowledge about in-line inspection (ILI) technology and in-the-ditch (ITD) nondestructive evaluation technology. A methodology for responding to ILI indications and specific criteria for when to respond to certain results is presented. Applicable repair techniques are reviewed. Sections are included for the discussion of reassessment interval determination and the consideration of appropriate preventive and mitigative measures. Finally, some meaningful performance metrics for measuring the effectiveness of a crack management program are discussed.

The technical discussion about crack formation, growth, and failure is to provide the knowledge needed by operators to effectively make integrity decisions about managing cracking on their pipeline systems.

2 Normative References

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

API 579-1/ASME FFS-1 1, Fitness-For-Service, June 2007

API Recommended Practice 1110, Recommended Practice for the Pressure Testing of Steel Pipelines for the Transportation of Gas, Petroleum Gas, Hazardous Liquids, Highly Volatile Liquids, or Carbon Dioxide

API Recommended Practice 1160, Managing System Integrity for Hazardous Liquid Pipelines, Second Edition

ASME B31.4-2012, Pipeline Transportation Systems for Liquids and Slurries

ASME B31.8-2012, Gas Transmission and Distribution Piping Systems

ASME B31G-2012, Manual for Determining the Remaining Strength of Corroded Pipelines

BS 7910-2013 2, Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures

NACE SP0204 3, Stress Corrosion Cracking (SCC) Direct Assessment Methodology, 2008

3 NACE International (formerly the National Association of Corrosion Engineers), 15835 Park Ten Place Houston, Texas 77084, www.nace.org.