PLEASE NOTE:

The information contained in this document was obtained from sources believed to be reliable and is based on technical information and experience currently available from members of the Compressed Gas Association, Inc. and others. However, the Association or its members, jointly or severally, make no guarantee of the results and assume no liability or responsibility in connection with the information or suggestions herein contained. Moreover, it should not be assumed that every acceptable commodity grade, test or safety procedure or method, precaution, equipment or device is contained within, or that abnormal or unusual circumstances may not warrant or suggest further requirements or additional procedure.

This document is subject to periodic review, and users are cautioned to obtain the latest edition. The Association invites comments and suggestions for consideration. In connection with such review, any such comments or suggestions will be fully reviewed by the Association after giving the party, upon request, a reasonable opportunity to be heard. Proposed changes may be submitted via the Internet at our website, www.cganet.com.

This document should not be confused with federal, state, provincial, or municipal specifications or regulations; insurance requirements; or national safety codes. While the Association recommends reference to or use of this document by government agencies and others, this document is purely voluntary and not binding unless adopted by reference in regulations.

A listing of all publications, audiovisual programs, safety and technical bulletins, and safety posters is available via the Internet at our website at www.cganet.com. For more information contact CGA at Phone: 703-788-2700, ext. 799. E-mail: customerservice@cganet.com.

Work Item 14-033
Cylinder Specifications Committee

NOTE—Technical changes from the previous edition are underlined.

NOTE—Appendices A, C, D, E, and F (Informative) are for information only.

NOTE—Appendix B (Normative) is a requirement.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
</tr>
</tbody>
</table>

Figures

- Figure 1—Typical schematic diagram of water jacket test apparatus
- Figure 2—Total expansion
- Figure 3—Permanent expansion
- Figure 4—Zero point
- Figure 5—Adjustment of water level in burette for expansion readings
- Figure 6—Example of burette-style EID requirements
- Figure 7—Typical nonburette EID systems
- Figure 8—Typical microprocessor-based EID systems
- Figure 9—Typical schematic diagram of direct expansion test apparatus
- Figure 10—Factors for compressibility of water
- Figure 11—Typical schematic diagram of liquid-based proof pressure test apparatus
Appendices
Appendix A—Sources of regulatory information (Informative) ...27
Appendix B—Test system component calibration (Normative) ...28
Appendix C—Marking of cylinders requalified by the water jacket or direct expansion methods (Informative)30
Appendix D—Sample forms for cylinder requalification (Informative) ..32
Appendix E—Troubleshooting (Informative) ..35
Appendix F—Checklists (Informative) ...40

Appendix figures
Figure C-1—Example of DOT cylinder marking ..31
Figure C-2—Example of TC cylinder marking ..31

Appendix tables
Table D-1—Test apparatus calibration verification data for water jacket volumetric expansion testing32
Table D-2—Direct expansion hydrostatic requalifying of cylinders ...33
Table D-3—Requalification data sheet ...34
Table F-1—Checklist for accuracy verification of test system (Direct expansion method)40
Table F-2—Checklist for determining the expansion of test system and components (Direct expansion method)...41
Table F-3—Checklist for hydrostatic testing of cylinders (Direct expansion method)42
1 Introduction

Pressure testing of compressed gas cylinders is required for many newly manufactured cylinders and is also an accepted test method for the requalification of cylinders. The referenced edition of the applicable documents, as specified by the U.S. Department of Transportation (DOT) in Title 49 of the U.S. Code of Federal Regulations (49 CFR), in Canada by Transport Canada (TC) in CSA B339, Cylinders, spheres, and tubes for the transportation of dangerous goods, and CSA B341, UN pressure receptacles and multiple-element gas containers for the transport of dangerous goods as referenced by the Transportation of Dangerous Goods Regulations, or the authority having jurisdiction shall be available at each facility conducting pressure testing/requalification [1, 2, 3, 4].

For the testing/requalification of cylinders manufactured under a special permit or equivalency certificate, a current copy of that special permit or equivalency certificate shall also be available. See Appendix A for addresses of agencies and organizations that produce these documents.

2 Scope

This standard contains operating and equipment requirements necessary to properly perform pressure testing of compressed gas cylinders.

3 Definitions

For the purpose of this standard, the following definitions apply.

3.1 Publication terminology

3.1.1 Shall
Indicates that the procedure is mandatory. It is used wherever the criterion for conformance to specific recommendations allows no deviation.

3.1.2 Should
Indicates that a procedure is recommended.

3.1.3 May
Indicates that the procedure is optional.

3.1.4 Will
Is used only to indicate the future, not a degree of requirement.

3.1.5 Can
Indicates a possibility or ability.

3.2 Technical definitions

3.2.1 Accuracy
Degree of conformity of a measured or calculated quantity to its actual (true) value.

3.2.2 Accuracy grade
Inherent quality of the device.

NOTE—Accuracy grade expresses the maximum error allowed for the device at any reading and is expressed as a percentage of the full scale of the device.

3.2.3 Actual test pressure
True, recorded pressure applied to a cylinder during a test.

3.2.4 Bar
Metric measurement used for marking service pressure (1 bar = 14.5 psi).