NOTICE

JEDEC standards and publications contain material that has been prepared, reviewed, and approved through the JEDEC Board of Directors level and subsequently reviewed and approved by the JEDEC legal counsel.

JEDEC standards and publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for use by those other than JEDEC members, whether the standard is to be used either domestically or internationally.

JEDEC standards and publications are adopted without regard to whether or not their adoption may involve patents or articles, materials, or processes. By such action JEDEC does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the JEDEC standards or publications.

The information included in JEDEC standards and publications represents a sound approach to product specification and application, principally from the solid state device manufacturer viewpoint. Within the JEDEC organization there are procedures whereby a JEDEC standard or publication may be further processed and ultimately become an ANSI standard.

No claims to be in conformance with this standard may be made unless all requirements stated in the standard are met.

Inquiries, comments, and suggestions relative to the content of this JEDEC standard or publication should be addressed to JEDEC at the address below, or refer to www.jedec.org under Standards and Documents for alternative contact information.

Published by
©JEDEC Solid State Technology Association 2016
3103 North 10th Street
Suite 240 South
Arlington, VA 22201-2107

This document may be downloaded free of charge; however JEDEC retains the copyright on this material. By downloading this file the individual agrees not to charge for or resell the resulting material.

PRICE: Contact JEDEC

Printed in the U.S.A.
All rights reserved
PLEASE!

DON'T VIOLATE
THE
LAW!

This document is copyrighted by JEDEC and may not be reproduced without permission.

For information, contact:

JEDEC Solid State Technology Association
3103 North 10th Street
Suite 240 South
Arlington, VA 22201-2107

or refer to www.jedec.org under Standards-Documents/Copyright Information.
IC LATCH-UP TEST

Contents

1 Scope ............................................................................................................................... 1
  1.1 Classification ............................................................................................................. 1
  1.2 Latch-up immunity characterization ........................................................................ 2

2 Terms and definitions ..................................................................................................... 2

3 Apparatus and material .................................................................................................. 5
  3.1 Latch-up tester .......................................................................................................... 5
  3.2 Automated test equipment (ATE) ............................................................................ 5
  3.3 Heat source .............................................................................................................. 5

4 Procedure ......................................................................................................................... 6
  4.1 General latch-up test procedure .............................................................................. 6
  4.2 Detailed latch-up test procedure ............................................................................. 8
  4.2.1 I-test .................................................................................................................... 8
  4.2.1.1 Supply current limits ..................................................................................... 12
  4.2.2 $V_{\text{supply}}$ overvoltage test .............................................................................. 13
  4.2.3 Testing dynamic devices ................................................................................... 15
  4.2.4 DUT disposition .................................................................................................. 15
  4.2.5 Record keeping .................................................................................................... 16

5 Latch-up detection criteria .............................................................................................. 16

6 Summary .......................................................................................................................... 17

Tables
  1 Latch-up Immunity Levels .......................................................................................... 2
  2 Test Matrix .................................................................................................................. 7
  3 Timing specifications for I-test ..................................................................................... 10
  4 Timing specifications for $V_{\text{supply}}$ overvoltage test .................................................. 14

Figures
  1 Typical Latch-up test flow ........................................................................................... 6
  2 Test waveform for positive I-test ............................................................................... 9
  3 Test waveform for negative I-test .............................................................................. 9
  4 The equivalent circuit for positive input/output I-test latch-up testing ..................... 10
  5 The equivalent circuit for negative input/output I-test latch-up testing .................... 11
  6 Test waveform for $V_{\text{supply}}$ overvoltage test ......................................................... 14
  7 The equivalent circuit for $V_{\text{supply}}$ overvoltage test latch-up testing .................... 15

Annex A (informative) Examples of special pins that are connected to passive components ...... 18
Annex B (informative) Calculation of Operating Ambient or Operating Case Temperature for a Given Operating Junction Temperature ...................................................... 20
Annex C (informative) Examples of recording and reporting data .................................. 21
Annex D (informative) Differences between revisions ....................................................... 23
IC LATCH-UP TEST

(From JEDEC Board Ballots JCB-16-08, formulated under the cognizance of JC-14.1 Subcommittee on Reliability Test Methods for Packaged Devices.)

1 Scope

This standard covers the I-test and $V_{\text{supply}}$ overvoltage latch-up testing of integrated circuits.

The purpose of this standard is to establish a method for determining IC latch-up characteristics and to define latch-up detection criteria. Latch-up characteristics are extremely important in determining product reliability and minimizing No Trouble Found (NTF) and Electrical Overstress (EOS) failures due to latchup. This test method is applicable to NMOS, CMOS, bipolar, and all variations and combinations of these technologies.

NOTE As these technologies have evolved, it has been necessary to adjust this document to the realities of characterization with limits not imagined when the first latch-up document was generated some 25 years ago. Though it would be simpler to make the original limits of 1.5 times the maximum pin operating voltage an absolute level of goodess, the possibilities of success at this level are limited by the very low voltage technologies, and the medium and high voltage CMOS, BiCMOS and Bipolar technologies (>12 V). The concept of maximum stress voltage (MSV) allows the supplier to characterize latch-up in a way that differentiates between latch-up and EOS. This revision will make it more transparent to the end user that given the limits of certain technologies the subsequent latch-up characterizations are valid.

1.1 Classification

There are two classes for latch-up testing.

- Class I is for testing at room temperature ambient.
- Class II is for testing at the maximum operating ambient temperature ($T_a$) or maximum operating case temperature ($T_c$) or maximum operating junction temperature ($T_j$) in the data sheet.

For Class II testing at the maximum operating $T_a$ or $T_c$, the ambient temperature or case temperature ($T_j$) shall be established at the required test value. For Class II testing at the maximum operating $T_j$, the ambient temperature $T_a$ or the case temperature $T_c$ should be selected to achieve a temperature characteristic of the junction temperature for a given device operating mode(s) during latch-up testing. The maximum operating ambient or case temperature during stress may be calculated based on the methods detailed in Annex B. The values used in Class II testing shall be recorded in the final report.

NOTE Elevated temperature will reduce latch-up resistance, and class II testing is recommended for devices that are required to operate at elevated temperature.