POWDER METALLURGY

& Particulate Materials Processing

by Randall M. German
Powder Metallurgy and Particulate Materials Processing

The Processes, Materials, Products, Properties, and Applications

Randall M. German

Brush Chair Professor in Materials
Center for Innovative Sintered Products
Pennsylvania State University

dedicated to
Carol, Laura, Ariana, and Angela
Powder metallurgy and particulate materials processing is abbreviated as P/M² and provide the focus for this book. These subjects include a variety of techniques to fabricate engineered products using principles ranging from materials synthesis to industrial engineering. The P/M² technologies create particles, control their attributes, consolidate the particles into shapes, and heat the shapes to a temperature where the particles bond into a strong product. Most of the shaping is applied to mass production applications, where the tool cavity is replicated over and over. Accordingly, each piece becomes economical because tooling, engineering, and equipment costs are spread over many parts. Many of the products have unique microstructure and performance attributes leading to a wide diversity of applications.

This book views P/M² from a perspective based on the laws of physics, chemistry, mechanics and dynamics, thermodynamics and kinetics, and chemical engineering. It is an outgrowth of the very successful book Powder Metallurgy Science (first edition 1984, second edition 1994). Although there is still a heavy emphasis on classic powder metallurgy (ferrous, nonferrous, refractory, cermets, hard materials or cemented carbides), there is now an interwoven treatment of composites, technical ceramics, and related material systems. The intent is to teach the generic principles associated with creating powders and fabricating engineered shapes from those powders; specific chemistries, applications, and engineering details are only used as illustrations. The book is both a text and reference. It is written for engineering students with a background in materials, metallurgy, ceramics, industrial engineering, mechanical engineering, engineering science, and engineered materials. However, it is also sufficiently basic that it can be used for industrial short courses and self-study.

The book is composed of 16 chapters, each divided into many small segments that can be consulted without reading the whole book. Chapter One provides a frame of reference. Chapters Two through Four focus on powder characterization, production, and microstructure control. Chapter Five considers adjustments to a powder for subsequent consolidation. Chapters Six through Eleven are the heart of the P/M² process. They focus on shaping, compaction, sintering, hot consolidation, and freeform processes. The balance of the book (Chapters Twelve through Sixteen) goes into finishing operations, characterization of the compact, testing and standards, material properties, designs, applications, and includes information on economics. Appendices are included with definitions, test standards, material properties, and answers to selected study questions. That organization provides both breadth and depth to the subject and sufficient reference information to allow subsequent study by the interested reader.
TABLE OF CONTENTS

Foreword

Table of Contents

Acknowledgments

The Author

Chapter One. Introduction

1. A. Frame of Reference
2. B. Definitions
3. C. Brief History
4. D. Reasons for Using Powders
5. E. Future Prospects
6. F. Suggested References
7. G. Study Questions

Chapter Two. Powder Characterization

2. A. Concepts
2. B. Powder Sampling
2. C. Particle Size Measurement
2. D. Particle Size Data
2. E. Problems in Particle Size Analysis
2. F. Particle Shape
2. G. Surface Area
2. H. Packing Density and Interparticle Friction
2. I. Compressibility
2. J. Powder Internal Structure
2. K. Chemical Characterization
2. L. Minimum Characterization Tests
2. M. Suggested References
2. N. Study Questions

Chapter Three. Powder Fabrication

3. A. Basic Approaches
3. B. Mechanical Fabrication Techniques
3. C. Electrolytic Fabrication Techniques
3. D. Chemical Fabrication Techniques
3. E. Atomization Techniques
3. F. Evaporation Techniques
3. G. Techniques for Nanoscale and Submicrometer Powders
3. H. Approaches to Forming Specific Powders
3. I. Suggested References
3. J. Study Questions

Chapter Four. Microstructure Control in Powders

4. A. Introduction
4. B. Microstructures of Powders
4. C. Composition Adjustments
4. D. Kinetics of Solidification in Powders
4. E. Applications of Rapid-Solidification-Rate Powder Products
4. F. Nanoscale Structures
4. G. Economics of Novel Powders
4. H. Summary Comments
4. I. Suggested References
4. J. Study Questions

Chapter Five. Tailoring Powders for Shaping and Consolidation

5. A. Powder Handling
5. B. Particle Modifications
5. C. Particle Packing Modifications
5. D. Polymer Additives
5. E. Coated and Bonded Powders
5. F. Mixing and Blending
5. G. Pelletizing and Granulating
5. H. Summary Comments
5. I. Suggested References
5. J. Study Questions

Chapter Six. Powder Shaping

6. A. Shaping Versus Compaction
6. B. Feature-Based Shaping Decisions
6. C. Binders and Shaping Conditions
6. D. Injection Molding
6. E. Extrusion
6. F. Slurry Techniques
6. G. Summary on Shaping Technologies
6. H. Suggested References
6. I. Study Questions

Chapter Seven. Powder Compaction

7. A. Introduction and Observations
7. B. Particle Deformation in Compaction
7. C. Die Compaction Technology
7. D. Cold Isostatic Compaction
7. E. Computer Simulations
7. F. Designing for Compaction
14. E. Oxidation- and Corrosion-Resistant Materials
14. F. High-Hardness Materials
14. G. Low-Density Materials
14. H. High-Density, Inertial Materials
14. I. Electrical Materials
14. J. Magnetic Materials
14. K. Thermal Management Materials
14. L. Biocompatible Materials
14. N. Summary Comments
14. O. Suggested References
14. P. Study Questions

Chapter Fifteen. Design and Cost Guidelines
15. A. Overview of Design Factors
15. B. Technical Rationalization
15. C. Cost Issues
15. D. Process Selection Guidelines
15. E. Product Design Guidelines
15. F. Suggested References
15. G. Study Questions

Chapter Sixteen. Markets and Applications
16. A. Markets for P/M² Products
16. B. Example Applications
16. C. Growth Prospects
16. D. Summary
16. E. Suggested References
16. F. Study Questions

Appendices
A. Common Terms
B. Standards
C. Material Properties
D. Constants and Conversion Factors
E. Answers to Odd Numbered Study Questions

Index
Many individuals helped produce this book. The artwork was created by Rick Sharbaugh and technical editing was provided by Christine Doran, both were terribly helpful and I am most thankful for their assistance. Julian Thomas helped with several of the photographs. Special recognition goes to the students who used draft versions for a P/M² course at Penn State. Additionally, considerable insight was provided by inputs, samples, data, photographs, and reviews from the following individuals: Sundar Atre, Deborah Blaine, Jon Bolstad, Animesh Bose, Johnny Bruhn, Steve Caldwell, Louis Campbell, René Cooper, Kristina Cowan, Robert Dowding, Jim Dunlap, Hiroyuki Endo, Shaji Farooq, Sherwood Fawcett, Susan Ferchak, Akira Fujiki, Anthony Griffio, Tom Haberberger, Donald Heaney, Winfried Huppmann, Kuen-Shyang Hwang, Joyce Hyde, Ronald Iacocca, Edmond Ilia, Brian James, John Johnson, Peter Johnson, Ganhau Lei, Gerhard Leichfried, Kay Leong Lim, S. T. Paul Lin, Steve Miller, Bud Mott, Neal Myers, Jim Oakes, Robert Oddone, Masahiro Oguchi, Seong Jin Park, Brian Paul, Joel Poirier, Tracy Potter, James Rawers, Ben Smarslok, Don Smith, John Smugeresky, Jean Stewart, Joseph Strauss, Pavan Suri, Lye King Tan, Christoph Toennes, Dennis Weaver, Tim Weaver, Tai-Shing Wei, Mu-Jen Yang, C.T. Yeo, and Haorong Zhang.

And final thanks to James Adams of MPIF who helped bring this project to fruition.
Rand German is the Brush Chair Professor in Materials and Director of the Center for Innovative Sintered Products at the Pennsylvania State University (Penn State). His academic appointment and teaching are in the Engineering Science and Mechanics Department. He previously held positions at Rensselaer Polytechnic Institute, J. M. Ney Co., Mott Corp., Sandia National Laboratories, and Battelle Columbus.

His doctorate is in Materials Science from the University of California (Davis) in 1975, following a masters in Metallurgical Engineering from the Ohio State University (1971) and a bachelors in Materials Science and Engineering from San Jose State University (1968). In addition he has an honorary doctorate from the Universidad Carlos III de Madrid.

He is a Fellow of APMI International and ASM International. His awards include the Tesla Medal, University of California (Davis) Distinguished Engineering Alumni Award, San Jose State University Award of Distinction, Nanyang Professorship (Nanyang Technological University), Penn State Engineering Society Outstanding and Premiere Research Awards, Metal Powder Industries Federation Distinguished Service Award, and Kuczynski and Samsonov Prizes of the International Team for the Science of Sintering.

Rand’s publication list exceeds 750 articles, 20 edited books, and he is co-inventor on 22 patents. His 12 books include Liquid Phase Sintering, Particle Packing Characteristics, Sintering Theory and Practice, Powder Metallurgy of Iron and Steel, Injection Molding of Metals and Ceramics (with A. Bose), and User’s Guide to Powder Injection Molding - Designs and Applications.

He lives in State College, Pennsylvania, with Carol, his wife; they have two married sons, Eric and Garth, who both live in California.
CHAPTER 1

INTRODUCTION

This chapter introduces powder processing to set the stage for the book and for understanding the scope of this technology. Historical aspects of the subject are introduced to illustrate the base of successful applications.

Outline
A. Frame of Reference
B. Definitions
C. Brief History
D. Reasons for Using Powders
E. Future Prospects
F. Suggested References
G. Study Questions