PREFACE

The MBMA Metal Building Systems Manual incorporates the results of research undertaken by MBMA, its member companies and other industry groups. In many respects, it reflects refinement and advances in the knowledge of load application methods and design. This edition of the Metal Building Systems Manual replaces the 2006 edition with 2010 Supplement.

Most municipalities in the United States have now adopted a building code. In the past, where a building code did not govern the design, the recommended loads in the MBMA Low-Rise Building Systems Manual (the predecessor to the Metal Building Systems Manual) were often specified. In recognition of the decreased need for MBMA loads, the Metal Building Systems Manual now focuses on how to apply the loads specified by the International Building Code and ASCE 7. Although the information in the new manual can be applied to low-rise buildings in general, it concentrates on issues related to design, code compliance and specification of metal building systems.

Use of this manual is totally voluntary. Each building manufacturer or designer retains the prerogative to choose its own design and commercial practices and the responsibility to design its building systems to comply with applicable specifications and safety considerations.

This 2012 edition of the MBMA Metal Building Systems Manual brings the manual into conformance with the 2012 Edition of the International Building Code and ASCE 7-10. It incorporates the results of research and development undertaken by MBMA, its member companies and other industry groups. It also updates referenced standards to the current editions.

Although every effort has been made to present accurate and sound information, the responsibility for individual project's rests with the design professional and contract parties. MBMA assumes no responsibility whatsoever for the application of this information to the design or construction of any specific building system.

MBMA expressly disclaims all liability for damages of any sort whether direct, indirect or consequential, arising out of the use, reference to, or reliance on this manual or any of its contents. MBMA DISCLAIMS ANY AND ALL WARRANTIES EXPRESS AND IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
TABLE OF CONTENTS

LIST OF FIGURES ... xi

LIST OF TABLES .. xiii

LIST OF DESIGN EXAMPLES .. xiv

CHAPTER I DESIGN PRACTICE AND LOAD APPLICATION ... 1

1.1 BACKGROUND .. 1

1.2 DESIGN PRACTICE ... 3

1.3 LOAD APPLICATION .. 3

1.3.1 Definitions .. 4

1.3.2 Live Loads ... 7

1.3.3 Roof Live Loads ... 8

1.3.4 Wind Loads ... 11

1.3.5 Snow Loads ... 134

1.3.6 Seismic Loads .. 174

1.3.7 LOAD COMBINATIONS .. 235

CHAPTER II CRANE LOADS .. 237

2.1 GENERAL .. 237

2.2 CRANE TYPES ... 237

2.2.1 Top Running Cranes ... 238

2.2.2 Underhung Bridge Cranes ... 240

2.2.3 Underhung Monorail Cranes .. 240

2.2.4 Jib Cranes .. 241

2.2.5 Single Leg Gantry Crane .. 243

2.2.6 Stacker Crane .. 244

2.3 CRANE SPECIFICATIONS ... 245

2.3.1 Bridge or Monorail Cranes ... 245

2.3.2 Jib Cranes .. 248

2.4 CRANE LOADS .. 248

2.4.1 Wheel Load ... 248

2.4.2 Vertical Impact ... 249

2.4.3 Lateral Force ... 249

2.4.4 Longitudinal Force ... 249

2.4.5 Crane Loading Conditions .. 250

2.5 BUILDING FRAMES AND SUPPORT COLUMNS .. 250

2.5.1 Single Crane Aisle with One Crane .. 250

2.5.2 Single Crane Aisle with Multiple Cranes .. 251

2.5.3 Multiple Crane Aisles with Single Cranes .. 251

2.5.4 Multiple Crane Aisles with Multiple Cranes .. 251

2.5.5 Deflection and Drift .. 253

2.5.6 Building Layouts .. 253

2.5.7 Brackets and Crane Columns .. 257

2.6 RUNWAY BEAMS AND SUSPENSION SYSTEMS .. 258

2.6.1 Single Crane .. 259

2.6.2 Multiple Cranes .. 259

2.6.3 Top-Running Bridge Cranes ... 260

2.6.4 Underhung Cranes and Monorails .. 261

2.7 LONGITUDINAL CRANE AISLE BRACING ... 263

2.7.1 Single Crane .. 263

2.7.2 Multiple Cranes .. 263
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7.3</td>
<td>Longitudinal Deformations Due to Thermal Expansion</td>
<td>264</td>
</tr>
<tr>
<td>2.8</td>
<td>RUNWAY STOPS</td>
<td>265</td>
</tr>
<tr>
<td>2.9</td>
<td>FATIGUE</td>
<td>265</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Crane Service Classifications</td>
<td>265</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Designing for Fatigue</td>
<td>267</td>
</tr>
<tr>
<td>2.10</td>
<td>CRANE WHEELS AND RAILS</td>
<td>268</td>
</tr>
<tr>
<td>2.10.1</td>
<td>Crane Wheels</td>
<td>268</td>
</tr>
<tr>
<td>2.10.2</td>
<td>Rails</td>
<td>269</td>
</tr>
<tr>
<td>2.10.3</td>
<td>Rail Attachments</td>
<td>272</td>
</tr>
<tr>
<td>2.11</td>
<td>HEAVY-DUTY CYCLE CRANES</td>
<td>274</td>
</tr>
<tr>
<td>2.11.1</td>
<td>Crane Runway Loading</td>
<td>274</td>
</tr>
<tr>
<td>2.11.2</td>
<td>Building Classifications</td>
<td>276</td>
</tr>
<tr>
<td>2.11.3</td>
<td>AIST Load Combinations</td>
<td>277</td>
</tr>
<tr>
<td>2.11.4</td>
<td>Deflection</td>
<td>278</td>
</tr>
<tr>
<td>2.11.5</td>
<td>Fatigue</td>
<td>278</td>
</tr>
<tr>
<td>2.11.6</td>
<td>Detailing and Fabrication Considerations</td>
<td>278</td>
</tr>
<tr>
<td>2.12</td>
<td>SPECIFICATION OF CRANE SYSTEMS</td>
<td>282</td>
</tr>
<tr>
<td>2.13</td>
<td>ERECTION</td>
<td>282</td>
</tr>
<tr>
<td>2.14</td>
<td>OPERATION AND MAINTENANCE</td>
<td>282</td>
</tr>
<tr>
<td>2.15</td>
<td>CRANE EXAMPLE</td>
<td>283</td>
</tr>
<tr>
<td>3.1</td>
<td>INTRODUCTION</td>
<td>289</td>
</tr>
<tr>
<td>3.2</td>
<td>DESIGN CONSIDERATIONS RELATIVE TO ROOFING</td>
<td>297</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Metal Roofs</td>
<td>305</td>
</tr>
<tr>
<td>3.3</td>
<td>DESIGN CONSIDERATIONS RELATIVE TO SKYLIGHTS</td>
<td>306</td>
</tr>
<tr>
<td>3.4</td>
<td>DESIGN CONSIDERATIONS RELATIVE TO CLADDING, FRAME DEFORMATION AND DRIFT</td>
<td>309</td>
</tr>
<tr>
<td>3.5</td>
<td>DESIGN CONSIDERATIONS RELATIVE TO INTERIOR PARTITIONS AND CEILINGS</td>
<td>318</td>
</tr>
<tr>
<td>3.6</td>
<td>DESIGN CONSIDERATIONS RELATIVE TO VIBRATION / ACCELERATION</td>
<td>324</td>
</tr>
<tr>
<td>3.7</td>
<td>DESIGN CONSIDERATIONS RELATIVE TO EQUIPMENT</td>
<td>325</td>
</tr>
<tr>
<td>3.1</td>
<td>INTRODUCTION</td>
<td>335</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>335</td>
</tr>
<tr>
<td>1.2</td>
<td>Definitions</td>
<td>335</td>
</tr>
<tr>
<td>2.1</td>
<td>General</td>
<td>338</td>
</tr>
<tr>
<td>2.2</td>
<td>Changes in Order Documents or Contract Documents</td>
<td>339</td>
</tr>
<tr>
<td>3.1</td>
<td>Design Responsibility</td>
<td>340</td>
</tr>
<tr>
<td>3.2</td>
<td>End Customer Responsibility</td>
<td>341</td>
</tr>
<tr>
<td>3.3</td>
<td>Manufacturer’s Responsibility</td>
<td>343</td>
</tr>
<tr>
<td>4.1</td>
<td>Materials and Material Tests</td>
<td>345</td>
</tr>
<tr>
<td>4.2</td>
<td>Fabrication</td>
<td>345</td>
</tr>
<tr>
<td>5.1</td>
<td>Delivery</td>
<td>349</td>
</tr>
<tr>
<td>5.2</td>
<td>Receipt</td>
<td>349</td>
</tr>
<tr>
<td>6.1</td>
<td>General</td>
<td>351</td>
</tr>
<tr>
<td>6.2</td>
<td>Metal Building Systems Erection and Other Field Work</td>
<td>351</td>
</tr>
<tr>
<td>6.3</td>
<td>Site Survey</td>
<td>352</td>
</tr>
<tr>
<td>6.4</td>
<td>Concrete Slab, Foundation and Anchor Bolt Setting</td>
<td>352</td>
</tr>
</tbody>
</table>
Metal Building Systems Manual

A13.1 BACKGROUND .. A-69
A13.2 SYSTEMS ENGINEERED METAL BUILDINGS .. A-70
A13.3 RULING ON GUTTER INSTALLATION ... A-70
A13.4 STEEL COALITION LUBRICANT TASK GROUP FINAL REPORT A-72

APPENDIX A14 CONVERSION FACTORS ... A-97
APPENDIX A15 ADDRESSES OF ORGANIZATIONS ... A-99
APPENDIX A16 METAL ROOFING DETAILS FOREWORD ... A-105
 SECTION 1 - TRAPEZOIDAL RIB PANEL DETAILS .. A-106
 SECTION 2 - VERTICAL RIB PANEL DETAILS (LOW SLOPE) .. A-106

APPENDIX A17 BIBLIOGRAPHY ... A-107
LIST OF FIGURES

Chapter I

Figure 1.3.4.4: Effective Wind Load Area ... 18
Figure 1.3.4.8: Example of Drift Determinations... 27
Figure 1.3.4.5(a): MWFRS Coefficients in Transverse Direction (Gable Roof) 29
Figure 1.3.4.5(b): MWFRS Coefficients in Transverse Direction (Single Slope) 29
Figure 1.3.4.5(c): MWFRS Coefficients in Longitudinal Direction (Gable Roof) 31
Figure 1.3.4.5(d): MWFRS Coefficients in Longitudinal Direction (Single Slope) 31
Figure 1.3.4.5(e): MBMA Recommendation for Open Building in Longitudinal Direction ... 32
Figure 1.3.4.9(a): Building Geometry and Wind Application Zones for Components and Cladding 41
Figure 1.3.4.9(b): Building Geometry and Wind Application Zones for Components and Cladding ... 53
Figure 1.3.4.9(c): Building Geometry.. 92
Figure 1.3.4.9(d): Wind Application Zones for Components and Cladding 103
Figure 1.3.4.9(e): Building Geometry and Wind Application Zones for Components and Cladding... 114
Figure 1.3.4.9(f): Building Geometry.. 127
Figure 1.3.5.8: Unbalanced Snow Loads for Gable/Hip Roofs .. 139
Figure 1.3.5.14(a): Building Geometry... 143
Figure 1.3.5.14(b): Building Geometry.. 150
Figure 1.3.5.14(c-1): Building Geometry and Drift Locations ... 153
Figure 1.3.5.14(c-2): Drift Load for Area A... 156
Figure 1.3.5.14(c-3): Drift Load for Area B... 157
Figure 1.3.5.14(c-4): Sliding Snow for Area B... 158
Figure 1.3.5.14(c-5): Drift Load for Areas C1 and C2... 159
Figure 1.3.5.14(c-6): Drift Load for Area D... 160
Figure 1.3.5.14(c-7): Sliding Snow for Area D... 161
Figure 1.3.5.14(c-8): Intersecting Snow Drifts for Area E .. 161
Figure 1.3.5.14(c-9): Valley Snow Drift for Area F... 162
Figure 1.3.5.14(d-1): Building Geometry and Drift Locations ... 163
Figure 1.3.5.14(d-2): Drift Load for Area A... 166
Figure 1.3.5.14(d-3): Sliding Snow for Area A... 167
Figure 1.3.5.14(d-4): Valley Drift Load for Area B... 168
Figure 1.3.5.14(d-5): Drift Load for Area C... 169
Figure 1.3.5.14(d-6): Drift Load for Area D... 170
Figure 1.3.5.14(e-1): Building Geometry and Drift Locations ... 171
Figure 1.3.5.14(e-2): Calculations for Areas A and B... 173
Figure 1.3.5.14(e-3): Calculations for Area C... 173
Figure 1.3.6.10(a): Isometric of the Metal Building Seismic Example.............................. 182
Figure 1.3.6.10(b-1): Isometric of the Metal Building Example with CMU Walls 213
Figure 1.3.6.10(b-2): Use of Bolt Holes in High Seismic Applications............................. 228
Figure 1.3.6.10(b-3): Section Showing Continuous Gutter System............................... 228
Figure 1.3.6.10(b-4): Spandrel Beam Used as Connecting Element............................. 230
Figure 1.3.6.10(b-5): Eave Trusses Used as Connecting Elements................................. 232
Figure 1.3.6.10(b-6): Example of Wall Anchor Connection... 233
Figure 1.3.6.10(b-7): Hypothetical Wall Elevation ... 233

Chapter II

Figure 2.2.1(a): Top Running Bridge Crane with Suspended Trolley 238
Figure 2.2.1(b): Top Running Bridge Crane with Top Bearing Trolley............................ 239
Figure 2.2.2: Underhung Bridge Crane.. 240
Figure 2.2.3: Underhung Monorail Crane... 241
Figure 2.2.4(a): Column Mounted Jib Crane... 242
Figure 2.2.4(b): Column Mounted Jib Crane with Supplemental Column.......................... 242
Figure 2.2.4(c): Floor Mounted Jib Crane .. 242
Figure 2.2.5: Single Leg Gantry Crane ... 243
Figure 2.2.6: Stacker Crane ... 244
Figure 2.3.1(a): Clearances for Top Running Crane Aisles ... 246
Figure 2.3.1(b): Clearances for Underhung Crane Aisles ... 247
Figure 2.4.5: Crane Loading Conditions ... 250
Figure 2.5.6(a): Plan View of a Crane Aisle ... 254
Figure 2.5.6(b): Crane Building with Two Building Aisles and a Single Crane Aisle 255
Figure 2.5.6(c): Crane Building with Two Building Aisles and Multiple Crane Aisles 256
Figure 2.5.7(a): Indoor Runway Supports for Top Running Cranes 257
Figure 2.5.7(b): Outdoor Runway Supports for Top Running Cranes 258
Figure 2.6.3: Common Railway Beam Sections for Top Running Cranes 260
Figure 2.6.4: Runway Beams for Underhung and Monorail Cranes 261
Figure 2.6.4.3(a): Rigid Suspension for Underhung and Monorail Cranes 262
Figure 2.6.4.3(b): Flexible Suspension for Underhung and Monorail Cranes 262
Figure 2.7a: Longitudinal Bracing with Expansion Joint ... 264
Figure 2.7b: Longitudinal Bracing without Expansion Joint .. 264
Figure 2.10.1: Typical Crane Wheels ... 269
Figure 2.10.2: Example of Rail Arrangement Using 39 ft. Standard Lengths 271
Figure 2.10.3: Common Methods of Fastening Rails to Runway Beams 273
Figure 2.15(a): Crane Location for Maximum Vertical Load on Columns 284
Figure 2.15(b): Crane Loads ... 287

Chapter III
Figure 3.1: CMU with Bond Breaker Control Joint ... 313
Figure 3.2: CMU with Continuous Flashing Control Joint ... 313

Chapter IV
Figure 9.1: Cold-Formed Structural Members ... 362
Figure 9.2(a): Built-Up Structural Member ... 364
Figure 9.2(b): Built-Up Structural Member ... 365

Chapter VIII
Figure 8.6: Orientations of an Interior Fire-Resistive Wall Relative to the Roof Purlins 397

Appendix
Figure A3.2.2(a): Horizontal "Thrust" Force (Pinned-base) ... A-7
Figure A3.2.2(b): Horizontal "Thrust" Force (Fixed-base) .. A-7
Figure A3.4: Tension rod ... A-8
Figure A3.5(a): Hairpin Rods ... A-8
Figure A3.5(b): Spread Tie Rod .. A-8
Figure A3.6: Examples of Shear Blocks ... A-9
Figure A4.2: Rectangular Gutters - Width of Gutter .. A-12
Figure A6.1(a): Recommended Method for Hanging Loads on a Single Purlin A-23
Figure A6.1(b): Incorrect Method for Hanging Loads on Purlins A-23
Figure A6.1(c): Example of Clamp Some Manufacturers May Find Acceptable A-24
Figure A6.1(d): Example of Spreader Beam (a.k.a. Trapeze Beam) A-24
Figure A6.1(e): Example of Seismic or Sway Brace ... A-25
Figure A7.2.1: Mean Wind Speed Variation With Height ... A-29
Figure A7.2.2.1: Typical Time History Plot of External Pressure Coefficients A-34
Figure A7.2.2.2(a): Wind-Induced Pressures on Purlin A-B ... A-35
Figure A7.2.2.2(b): Wind-Induced Line Loads on Rigid Frames A-37
Figure A7.2.3(a): Typical Range of Internal Pressures Coefficients vs. Size of Opening A-38
Figure A7.2.3(b): Influences of Openings on Internal Pressure ... A-40
Figure A7.2.3(c): External and Internal Pressure Distributions for a Partially Enclosed Building A-40
Figure A7.3.1: Monitored Pressure Coefficients and Assumed Code Pressures A-42
LIST OF TABLES

Chapter I
Table 1.3.1(a): Importance Factors ... 5
Table 1.3.1(b): Deflection Limits ... 6
Table 1.3.1(c): Typical Collateral Loads ... 7
Table 1.3.3(a): Roof Live Loads ... 9
Table 1.3.4.5(a): Main Framing Coefficients for Transverse Direction 28
Table 1.3.4.5(b): Main Framing Coefficients for Longitudinal Direction (All Roof Angles θ) 30
Table 1.3.4.6(a): Wall Coefficient Equations 33
Table 1.3.4.6(b): Roof and Overhang Coefficient Equations Gable Roofs, 0° ≤ θ ≤ 7° 34
Table 1.3.4.6(c): Roof and Overhang Coefficient Equations Gable Roofs, 7° < θ ≤ 27° 35
Table 1.3.4.6(d): Roof and Overhang Coefficient Equations Gable Roofs, 27° < θ ≤ 45° 36
Table 1.3.4.6(e): Roof Coefficient Equations Multispan Gable Roofs, 10° < θ ≤ 30° 37
Table 1.3.4.6(f): Roof Coefficient Equations Single Slope, 3° < θ ≤ 10° 38
Table 1.3.4.6(g): Roof Coefficient Equations Single Slope, 10° < θ ≤ 30° 39
Table 1.3.4.6(h): Roof Coefficient Equations Sawtooth Roofs 40
Table 1.3.5.2: Typical Heated and Unheated Building Usage 135

Chapter II
Table 2.2: General Range of Crane Types .. 237
Table 2.5: Loading for Building Frames and Support Columns 252
Table 2.6: Runway Beams and Suspension Systems 259
Table 2.7: Longitudinal Bracing ... 264
Table 2.9: Design Life Stress Range Fluctuations for Parts and Connections 265
Table 2.10.2: Commonly Used Rail Sections—Data 270
Table 2.11.2: AIST Crane Side Thrusts ... 276

Chapter III
Table 3.1: Serviceability Considerations – Metal Roofing 330
Table 3.2: Serviceability Considerations - Skylights Supports 330
Table 3.3: Serviceability Considerations – Cladding 331
Table 3.4: Serviceability Considerations – Ceilings & Partitions 332
Table 3.5: Serviceability Considerations - Equipment 333

Chapter IV
Table 6.1: Crane Runway Beam Erection .. 355
Table 9.1: Cold-Formed Structural Members .. 363
Table 9.2: Built-Up Structural Members ... 366

Chapter VIII
Table 8.1: UL Fire Resistive Rated Assemblies Applicable to Metal Building Systems 392
Table 8.3(a): Summary of Column Fire Test Results 393
Table 8.3(b): Summary of Column Protection by Engineering Investigation 394

Appendix
Table A4.5(a): Factor "B" by Roof Slope .. A-15
Table A4.5(b): Water Handling Capacity of Scuppers in Gallons per Minute (GPM) A-16
Table A7.2.1: Exposure Category Constants .. A-30
Table A7.6a: Design Wind Speeds, ASCE7 93 to ASCE7-10 A-51
Table A7.6b: Conversion of Wind Speeds and Pressure Coefficients A-52
LIST OF DESIGN EXAMPLES

Chapter I
- Roof Live Load Example 1.3.3.3: Low Slope Multi-Span Rigid Frame ... 9
- Wind Load Example 1.3.4.9(a): Standard Gable Building .. 41
- Wind Load Example 1.3.4.9(b)-1: Enclosed Building .. 53
- Wind Load Example 1.3.4.9(b)-2: Partially Enclosed Building .. 66
- Wind Load Example 1.3.4.9(b)-3a: Open Building .. 78
- Wind Load Example 1.3.4.9(b)-3b: Open Building 80' x 80' ... 83
- Wind Load Example 1.3.4.9(c): Building with Roof Overhangs ... 92
- Wind Load Example 1.3.4.9(d): Risk Category III with Gable Roof Greater than 30° .. 103
- Wind Load Example 1.3.4.9(e): Single Slope Building .. 113
- Wind Load Example 1.3.4.9(e): Single Slope Building .. 114
- Wind Load Example 1.3.4.9(f): Building with Parapet ... 127
- Snow Load Example 1.3.5.14(a): Roof with Eave Overhang .. 143
- Snow Load Example 1.3.5.14(b): Standard Gable Roof .. 150
- Snow Load Example 1.3.5.14(c): Multiple Gable Roofs and Canopy ... 153
- Snow Load Example 1.3.5.14(d): Unbalance Gable Roof and Sliding Snow ... 163
- Snow Load Example 1.3.5.14(e): Roof Projections .. 171
- Seismic Load Example 1.3.6.10(a): Determination of Seismic Design Forces .. 182
- Seismic Load Example 1.3.6.10(b): Metal Building with Concrete Masonry Walls .. 213

Chapter II
- Crane Load Example Example 2.15: Two Aisles with One Crane per Aisle ... 283

Appendix
- Rain Load Example A4.6: Low Slope Gable Roof with Parapets .. A-17
Chapter I Design Practice and Load Application

1.1 Background

Historically, there have been approximately 5,000 building codes in the United States, patterned after the three model building codes and various national and industry standards. Before entering into a brief discussion of these documents, it may be worthwhile to point out the difference between a national or industry standard (e.g., this manual), and a local building code. The purpose of a building code is to provide legal standards for the design and construction of buildings and structures in order to protect life, health and welfare of the citizenry. Thus, in its simplest context, a code is intended to provide for the safe use of buildings and structures under "normal" conditions. A national or industrial design standard, on the other hand, may be more inclusive, address other areas or reflect particular industry applications. Such documents usually contain more sophisticated design procedures and may predict design loads more accurately.

Most cities, counties, and other governmental jurisdictions have traditionally adopted one of the three model codes, with local modifications. These are the National Building Code, promulgated by Building Officials and Code Administrators International, Inc. (BOCA); Standard Building Code, promulgated by Southern Building Code Congress International, Inc. (SBCCI); and Uniform Building Code, promulgated by the International Conference of Building Officials (ICBO). This regional approach to code development has undergone a transition to national model codes. The International Code Council (ICC) was established in 1994 by BOCA, SBCCI, and ICBO as a nonprofit organization dedicated to developing a single set of comprehensive and coordinated national model construction codes. Their International Building Code (IBC) has been adopted by a large number of municipalities, although one must check with the local authorities to see if they have adopted any amendments to the IBC.

A few of the more important national standards promulgating bodies and industry practice developers are:

- Metal Building Manufacturers Association (MBMA)
- American Iron and Steel Institute (AISI)
- American Institute of Steel Construction (AISC)
- American Society of Civil Engineers (ASCE)
- Building Seismic Safety Council (BSSC)
- American Welding Society (AWS)
- American Society for Testing and Materials (ASTM)
- American National Standards Institute (ANSI)
- Underwriters Laboratories (UL)
- National Institute of Standards and Technology (NIST)
- American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE)
- Department of Energy (DOE)
- International Accreditation Service (IAS)