IEEE Recommended Practice for the Analysis of Fluctuating Installations on Power Systems

IEEE Power and Energy Society

Sponsored by the Transmission and Distribution Committee
IEEE Recommended Practice for the Analysis of Fluctuating Installations on Power Systems

Sponsor

Transmission and Distribution Committee of the IEEE Power and Energy Society

Approved 3 September 2015

IEEE-SA Standards Board
Abstract: Background on light flicker caused by fluctuations in power demands of variable loads is presented in this recommended practice. A flicker measurement method is presented using a meter that is completely described in IEC 61000-4-15. The short-term ($P_{st}$) and long-term ($P_{lt}$) flicker indices used for the analysis of flicker data are defined. Flicker limits for various voltage levels are presented. An assessment procedure for evaluating flicker compliance against emission limits is described. Methodologies to analyze background flicker to identify the flicker contribution of single loads are also presented.

Keywords: flicker, fluctuating loads, IEEE 1453™, power systems
Important Notices and Disclaimers Concerning IEEE Standards Documents

IEEE documents are made available for use subject to important notices and legal disclaimers. These notices and disclaimers, or a reference to this page, appear in all standards and may be found under the heading “Important Notice” or “Important Notices and Disclaimers Concerning IEEE Standards Documents.”

Notice and Disclaimer of Liability Concerning the Use of IEEE Standards Documents

IEEE Standards documents (standards, recommended practices, and guides), both full-use and trial-use, are developed within IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (“IEEE-SA”) Standards Board. IEEE (“the Institute”) develops its standards through a consensus development process, approved by the American National Standards Institute (“ANSI”), which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and participate without compensation from IEEE. While IEEE administers the process and establishes rules to promote fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the accuracy of any of the information or the soundness of any judgments contained in its standards.

IEEE does not warrant or represent the accuracy or content of the material contained in its standards, and expressly disclaims all warranties (express, implied and statutory) not included in this or any other document relating to the standard, including, but not limited to, the warranties of: merchantability; fitness for a particular purpose; non-infringement; and quality, accuracy, effectiveness, currency, or completeness of material. In addition, IEEE disclaims any and all conditions relating to: results; and workmanlike effort. IEEE standards documents are supplied “AS IS” and “WITH ALL FAULTS.”

Use of an IEEE standard is wholly voluntary. The existence of an IEEE standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity nor is IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing any IEEE Standards document, should rely upon his or her own independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate, seek the advice of a competent professional in determining the appropriateness of a given IEEE standard.

IN NO EVENT SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO: PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE UPON ANY STANDARD, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.

Translations

The IEEE consensus development process involves the review of documents in English only. In the event that an IEEE standard is translated, only the English version published by IEEE should be considered the approved IEEE standard.
Official statements

A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board Operations Manual shall not be considered or inferred to be the official position of IEEE or any of its committees and shall not be considered to be, or be relied upon as, a formal position of IEEE. At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear that his or her views should be considered the personal views of that individual rather than the formal position of IEEE.

Comments on standards

Comments for revision of IEEE Standards documents are welcome from any interested party, regardless of membership affiliation with IEEE. However, IEEE does not provide consulting information or advice pertaining to IEEE Standards documents. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Since IEEE standards represent a consensus of concerned interests, it is important that any responses to comments and questions also receive the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to comments or questions except in those cases where the matter has previously been addressed. For the same reason, IEEE does not respond to interpretation requests. Any person who would like to participate in revisions to an IEEE standard is welcome to join the relevant IEEE working group.

Comments on standards should be submitted to the following address:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
Piscataway, NJ 08854 USA

Laws and regulations

Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with the provisions of any IEEE Standards document does not imply compliance to any applicable regulatory requirements. Implementers of the standard are responsible for observing or referring to the applicable regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

IEEE draft and approved standards are copyrighted by IEEE under U.S. and international copyright laws. They are made available by IEEE and are adopted for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of engineering practices and methods. By making these documents available for use and adoption by public authorities and private users, IEEE does not waive any rights in copyright to the documents.

Photocopies

Subject to payment of the appropriate fee, IEEE will grant users a limited, non-exclusive license to photocopy portions of any individual standard for company or organizational internal use or individual, non-commercial use only. To arrange for payment of licensing fees, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.
Updating of IEEE Standards documents

Users of IEEE Standards documents should be aware that these documents may be superseded at any time by the issuance of new editions or may be amended from time to time through the issuance of amendments, corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the document together with any amendments, corrigenda, or errata then in effect.

Every IEEE standard is subjected to review at least every ten years. When a document is more than ten years old and has not undergone a revision process, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE standard.

In order to determine whether a given document is the current edition and whether it has been amended through the issuance of amendments, corrigenda, or errata, visit the IEEE-SA Website at http://ieeexplore.ieee.org/xpl/standards.jsp or contact IEEE at the address listed previously. For more information about the IEEE-SA or IEEE’s standards development process, visit the IEEE-SA Website at http://standards.ieee.org.

Errata

Errata, if any, for all IEEE standards can be accessed on the IEEE-SA Website at the following URL: http://standards.ieee.org/findstds/errata/index.html. Users are encouraged to check this URL for errata periodically.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect to the existence or validity of any patent rights in connection therewith. If a patent holder or patent applicant has filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed on the IEEE-SA Website at http://standards.ieee.org/about/sasb/patcom/patents.html. Letters of Assurance may indicate whether the Submitter is willing or unwilling to grant licenses under patent rights without compensation or under reasonable rates, with reasonable terms and conditions that are demonstrably free of any unfair discrimination to applicants desiring to obtain such licenses.

Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further information may be obtained from the IEEE Standards Association.
Participants

At the time this IEEE recommended practice was completed, the IEEE Std 1453 Working Group had the following membership:

Kenn Sedziol, Chair
Harish Sharma, Vice Chair

Mohamed Abdelrahaman
Moataz Ammar
Julio Barros
Rich Bingham
Math Bollen
Gary Chang
Jiri Drapela
Erich Gunther
Mark Halpin
Dennis Hansen
Randy Horton
Bill Howe
Dallas Jacobsen

Steven Johnston
Geza Joos
Roberto Langella
Theo Laughner
George Cristian Lazaroiu
Ryan Liu
Alex McEachern
Jan Meyer
Carl Miller
Bill Moncrief
Dave Mueller
Matt Norwalk
Sarah Perera
Al Powers

Sarah Ronnberg
Daniel Sabin
Andrew Sagl
Matthew Seeley
Steve Tatum
Alfredo Testa
Mario Tremblay
Tim Unruh
Neville Watson
Brian Wong
Wilson Xu
Francisc Zavoda
Dave Zech

The following members of the individual balloting committee voted on this recommended practice. Balloters may have voted for approval, disapproval, or abstention.

William Ackerman
Saleman Alibhay
Thomas Barnes
Julio Barros
Frank Basciano
Richard Bingham
William Bloethe
Math Bollen
James Boufard
Jeffrey Brogdon
Gustavo Brunello
William Bush
Wen-Kung Chang
James Cole
David E. De Luca
Carlo Donati
Gary Donner
Neal Dowling
Donald Dunn
Gearold O. H. Eidhin
David Gilmer
Joseph Grappe
Randall Groves
Ajit Gwal
Donald Hall
Dennis Hansen

Jeffrey Helzer
Lee Herron
Werner Hoezel
Richard Jackson
Steven Johnston
Laszlo Kadar
Yuri Khersonsky
Joseph L. Koepfinger
Jim Kulchisky
Theo Laughner
George Cristian Lazaroiu
Albert Livshitz
Sujit Mishra
Andrew Morris
Daniel Mulkey
Jerry Murphy
Arthur Neubauer
Michael Newman
Joe Nims
Matthew Norwalk
Gregory Olson
Carl Orde
Lorraine Padden
Marty Page
Bansi Patel
Branimir Petosic

Dean Philips
Mohamed Rahman
Reynaldo Ramos
Michael Roberts
Charles Rogers
Sarah Ronnberg
Daniel Sabin
Bob Saint
Bartien Sayogo
Robert Schuerger
Kenn Sedziol
Devki Sharma
Harish Sharma
Charles Simmons
David Singleton
Jerry Smith
Gary Smullin
K Stump
Michnael Swearingen
David Tepen
John Vergis
Daniel Ward
Kenneth White
James Wikston
Jian Yu
David Zech
When the IEEE-SA Standards Board approved this recommended practice on 3 September 2015, it had the following membership:

John D. Kulick, Chair
Jon Walter Rosdahl, Vice Chair
Richard H. Hulett, Past Chair
Konstantinos Karachalios, Secretary

Masayuki Ariyoshi
Ted Burse
Stephen Dukes
Jean-Philippe Faure
J. Travis Griffith
Gary Hoffman
Michael Janezic

Joseph L. Koepfinger*
David J. Law
Hung Ling
Andrew Myles
T. W. Olsen
Glenn Parsons
Ronald C. Petersen
Annette D. Reilly

Stephen J. Shellhammer
Adrian P. Stephens
Yatin Trivedi
Phillip Winston
Don Wright
Yu Yuan
Daidi Zhong

*Member Emeritus
Introduction

Voltage fluctuations on electric power systems sometimes give rise to noticeable illumination changes from lighting equipment. The frequency of these voltage fluctuations is much less than the 50 Hz or 60 Hz supply frequency. However, they may occur with enough frequency and magnitude to cause irritation for people observing the illumination changes. This phenomenon is often referred to as flicker, lamp flicker, and sometimes voltage flicker. Often times, the terms have been used interchangeably. IEEE Std 141™-1993 [B14] and IEEE Std 519™-1992 [B15] contain charts showing allowable voltage fluctuations. The advent of high-power electronic utilization equipment and mitigation equipment has given rise to some very complex voltage fluctuations that are not easily handled by IEEE Std 141-1993 [B14] and IEEE Std 519-1992 [B15]. For this reason, the IEEE has worked in close cooperation with the International Union for Electroheat (UIE) and the International Electrotechnical Commission (IEC) to enhance existing standards to include a broader part of the world community. In 2004, IEEE Std 1453-2004 was published, adopting the IEC flickermeter standard and providing recommended levels. IEEE Std 1453-2011 adopted the 2010 edition of the IEC 61000-4-15, moving the recommended acceptable flicker levels to its annex, facilitating the adoption of the IEC/TR 61000-3-7 in IEEE Std 1453.1™-2012. This present version of IEEE Std 1453 replaces both IEEE Std 1453-2011 and IEEE Std 1453.1-2012. This edition uses the IEC flicker methodology while providing additional information.
Contents

1. Overview .................................................................................................................................................... 1
   1.1 Scope .................................................................................................................................................. 1
   1.2 Purpose ................................................................................................................................................ 1

2. Normative references .................................................................................................................................. 2

3. Definitions ................................................................................................................................................. 2

4. History ....................................................................................................................................................... 6

5. Recommendations for characterizing flicker levels...................................................................................  7
   5.1 Introduction to flicker ..........................................................................................................................  7
   5.2 IEEE 1453 flicker monitoring procedures ...........................................................................................  8
   5.3 Flicker performance of different lamp types ..................................................................................... 11
   5.4 Impact of interharmonic voltages on light flicker .............................................................................. 14

6. Recommendations for flicker limits and evaluation procedure .............................................................. 15
   6.1 Planning levels.................................................................................................................................. 16
   6.2 Determining individual customer emission limits ............................................................................. 17
   6.3 Evaluating compliance with emission limits .................................................................................... 17
   6.4 Estimating flicker contribution of single customer ............................................................................ 19
   6.5 Rapid voltage change......................................................................................................................... 21

7. Estimating flicker levels at PCC of facilities serving fluctuating loads .................................................... 22
   7.1 Use of shape factors.......................................................................................................................... 23
   7.2 Estimating flicker levels for arc furnaces .......................................................................................... 26
   7.3 Summation effect for multiple sources .............................................................................................. 30

8. Customer agreements ............................................................................................................................... 30
   8.1 Flicker requirements......................................................................................................................... 30

Annex A (informative) Impact of interharmonics on flicker related to non-incandescent lamps ................. 32
   A.1 Equivalence between interharmonics and amplitude modulation..................................................... 32
   A.2 Interharmonics effects on Incandescent lamps ................................................................................. 33
   A.3 Interharmonics effects on non-incandescent lamps ........................................................................ 34
   A.4 IEC flickermeter response ................................................................................................................ 36

Annex B (informative) Methods to compute flicker transfer coefficient ..................................................... 38
   B.1 Case study 1 ...................................................................................................................................... 40
   B.2 Case study 2 ...................................................................................................................................... 49
   B.3 Case study 3 ...................................................................................................................................... 52

Annex C (informative) Shape factors ........................................................................................................... 58

Annex D (informative) Bibliography ........................................................................................................... 60
IEEE Recommended Practice for the Analysis of Fluctuating Installations on Power Systems

IMPORTANT NOTICE: IEEE Standards documents are not intended to ensure safety, security, health, or environmental protection, or ensure against interference with or from other devices or networks. Implementers of IEEE Standards documents are responsible for determining and complying with all appropriate safety, security, environmental, health, and interference protection practices and all applicable laws and regulations.

This IEEE document is made available for use subject to important notices and legal disclaimers. These notices and disclaimers appear in all publications containing this document and may be found under the heading “Important Notice” or “Important Notices and Disclaimers Concerning IEEE Documents.” They can also be obtained on request from IEEE or viewed at http://standards.ieee.org/PR/disclaimers.html.

1. Overview

1.1 Scope

This recommended practice provides background on light flicker caused by fluctuations in power demands of variable loads. A flicker measurement method is presented using a meter that is completely described in IEC 61000-4-15. The short-term ($P_{st}$) and long-term ($P_{lt}$) flicker indices used for the analysis of flicker data are defined. Flicker limits for various voltage levels are presented. An assessment procedure for evaluating flicker compliance against emission limits is described. Methodologies to analyze background flicker to identify the flicker contribution of single loads are also presented.

The document provides ways to estimate flicker levels at the Point of Common Coupling (PCC) depending on the type of the load. This document includes example terms and language that can be the basis for defining relative responsibilities and assessment methods for customer installations that may cause flicker.

1.2 Purpose

The purpose of this document is to provide guidance to system operators, owners, and engineers who are responsible for providing electrical service to installations that cause voltage fluctuations. It provides guidance on the principles and methodology that can be used to determine requirements for connecting fluctuating loads to both radial and network systems. Methods for determining appropriate flicker planning