Flood Resistant Design and Construction

This document uses both the International System of Units (SI) and customary units
American Society of Civil Engineers

Flood Resistant Design and Construction

This document uses both the International System of Units (SI) and customary units.
In 2006, the Board of Direction approved the revision to the ASCE Rules for Standards Committees to govern the writing and maintenance of standards developed by the Society. All such standards are developed by a consensus standards process managed by the Society’s Codes and Standards Committee (CSC). The consensus process includes balloting by a balanced standards committee made up of Society members and nonmembers, balloting by the membership of the Society as a whole, and balloting by the public. All standards are updated or reaffirmed by the same process at intervals not exceeding five years.

The material presented in this Standard has been prepared in accordance with recognized engineering principles. This Standard should not be used without first securing competent advice with respect to its suitability for any given application. The publication of the material contained herein is not intended as a representation or warranty on the part of the American Society of Civil Engineers, or of any other person named herein, that this information is suitable for any general or particular use or promises freedom from infringement of any patent or patents. Anyone making use of this information assumes all liability from such use.

A complete list of currently available standards is available in the ASCE Library (http://ascelibrary.org/page/books/s-standards).
The material presented in this standard has been prepared in accordance with recognized engineering principles. This standard should not be used without first securing competent advice with respect to its suitability for any given application. The publication of the material contained herein is not intended as a representation or warranty on the part of the American Society of Civil Engineers, or of any other person named herein, that this information is suitable for any general or particular use or promises freedom from infringement of any patent or patents. Anyone making use of this information assumes all liability from such use.

The 2014 edition has a number of significant technical revisions from the 2005 edition, including:

1. Defines Flood Design Class rather than using Risk/Occupancy Classification assigned under ASCE 7 and requires each building or structure governed by the standard to be assigned to Flood Design Class 1, 2, 3, or 4. Uses the assigned Flood Design Class to apply elevation requirements specified in Chapters 2, 4, 5, 6, and 7. Flood Design Class 4 buildings and facilities are equivalent to Occupancy Category/Risk Category IV buildings, which ASCE 7 identifies as essential facilities.
2. Adds definitions for Mixed Use and Residential Portions of Mixed Use in commentary to clarify limitations on use of dry floodproofing measures.
3. Changes the Coastal A Zone determination requirement from the designer’s responsibility to one depending on either: (1) delineation of a Limit of Moderate Wave Action (LiMWA) on a Flood Insurance Rate Map, or (2) designation by the Authority Having Jurisdiction.
4. Separates specifications for flood openings from the installation requirements. Requires the presence of louvers, blades, screens, faceplates, or other covers and devices to be accounted for in determining net open area for non-engineered openings and in determining the performance of engineered openings. Revises coefficient of discharge table for engineered flood openings. Adds commentary regarding selection of coefficient of discharge and for grouping or stacking of flood openings.
5. For Flood Design Class 4 buildings, requires the minimum lowest floor elevation (or floodproofing level of protection) to be the higher of the Base Flood Elevation plus freeboard specified in Chapters 2, 4, and 6, the Design Flood Elevation, or the 500-year flood elevation. The 500-year flood elevation requirement is new.
6. Clarifies text pertaining to alluvial fan high risk flood hazard areas.
7. In Coastal High Hazard Areas (V Zone) and Coastal A Zones (if delineated),
 a. Makes explicit that designs must account for local scour and erosion
 b. Provides for shallow foundations in Coastal A Zones under certain circumstances
 c. Requires flood openings in breakaway walls
 d. Eliminates orientation of the lowest horizontal structural member as a factor to determine elevation for lowest floors, equipment, and flood damage-resistant materials
 e. Requires exterior doors at the top of stairways that are located inside enclosed areas with breakaway walls
 f. Consolidates requirements for all nonstructural concrete slabs
 g. Allows substantial improvement of existing buildings seaward of the reach of mean high tide in V zones (makes ASCE 24 consistent with National Flood Insurance Program and Coastal A Zones).
8. Updates flood damage-resistant material requirements.
9. Clarifies emergency escape and rescue opening requirements for dry floodproofed buildings.
11. Consolidates requirements for tanks and more clearly distinguishes between requirements based on flood hazard area.
ACKNOWLEDGMENTS

The American Society of Civil Engineers (ASCE) acknowledges the work of the Flood Resistant Design and Construction Standard Committee of the Codes and Standards Activities Division of the Structural Engineering Institute. This group comprises individuals from many backgrounds including consulting engineering, research, construction, education, government, design, and private practice.

This standard was prepared through the consensus standards process by balloting in compliance with procedures of ASCE’s Codes and Standards Activities Committee. Those individuals who served on the ASCE 24-14 Standard Committee include

Christopher P. Jones, P.E., M.ASCE, Chair
Larry Buss, P.E., D.WRE, M.ASCE, CFM
Russell J. Coco, P.E., M.ASCE
James P. Colgate, RA, Esq., CFM
William L. Coulbourne, P.E., M.ASCE, F.SEI
James B. Destefano, P.E., AIA, F.SEI
Gary J. Ehrlich, P.E., M.ASCE
Shou-Shan Fan, Ph.D.
Kenneth J. Filarski, FAIA, AICP, LEED-AP BD+C, CFM, SAP+AEER, NCARB
Daryle L. Fontenot, P.E., CFM

Carol Friedland, Ph.D., P.E., CFM
Michael J. Graham, CFM
John L. Ingargiola, EI, CBO, CFM
Catherine M. Kaake, P.E., M.ASCE
Philip Line, P.E., M.ASCE
E. Michael McCarthy, P.E., M.ASCE
Joseph J. Messersmith, Jr., P.E., M.ASCE
Kimberly Paarlberg, P.A.
John Squerciati, P.E., CFM, M.ASCE
Terri L. Turner, AICP, CFM
Robert A. Wessel, Ph.D., F.ASTM
Thomas G. Williamson, P.E., F.ASCE, F.SEI
Garland Wilson, P.E., M.ASCE

ASCE would like to thank each member of the committee for his or her dedication and hard work during completion of ASCE 24-14.

ASCE would like to acknowledge the long-standing contributions of previous Committee Chair, Harry B. Thomas, and of those current members who have served the committee since the development of the 1998 edition: William L. Coulbourne, Shou-Shan Fan, Christopher P. Jones, Joseph J. Messersmith, Jr., and Kimberly Paarlberg.
UNIT CONVERSIONS

<table>
<thead>
<tr>
<th>Measurement</th>
<th>S.I. Units</th>
<th>Customary Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviations</td>
<td>m = meter (S.I. base unit of length)</td>
<td>yd = yard</td>
</tr>
<tr>
<td></td>
<td>cm = centimeter</td>
<td>in. = inch</td>
</tr>
<tr>
<td></td>
<td>km = kilometer</td>
<td>mi = mile</td>
</tr>
<tr>
<td></td>
<td>ha = hectare</td>
<td>acre</td>
</tr>
<tr>
<td></td>
<td>L = liter (S.I. base unit of volume)</td>
<td>gal = gallon</td>
</tr>
<tr>
<td></td>
<td>mL = milliliter</td>
<td>qt = quart</td>
</tr>
<tr>
<td></td>
<td>kg = kilogram (S.I. base unit of mass)</td>
<td>lb = pound</td>
</tr>
<tr>
<td></td>
<td>g = gram</td>
<td>oz = ounce</td>
</tr>
<tr>
<td></td>
<td>N = Newton (m·kg·s⁻²)</td>
<td>lbf = pound-force (lb/ft)</td>
</tr>
<tr>
<td></td>
<td>Pa = Pascal (N/m²)</td>
<td>psi = pounds per square inch</td>
</tr>
<tr>
<td></td>
<td>kPa = kilopascal</td>
<td>atm = atmosphere</td>
</tr>
<tr>
<td></td>
<td>J = Joule</td>
<td>ft-lbf = feet per pound-force</td>
</tr>
<tr>
<td></td>
<td>W = watt</td>
<td>Btu = British thermal unit</td>
</tr>
<tr>
<td></td>
<td>kW = kilowatt</td>
<td>hp = horsepower</td>
</tr>
<tr>
<td></td>
<td>s = second (S.I. base unit of time)</td>
<td>h = hour</td>
</tr>
<tr>
<td></td>
<td>min = minute</td>
<td>day</td>
</tr>
<tr>
<td></td>
<td>°C = degrees Celsius</td>
<td>°F = degrees Fahrenheit</td>
</tr>
<tr>
<td></td>
<td>ppm = parts per million</td>
<td>ppm = parts per million</td>
</tr>
<tr>
<td>Length</td>
<td>1 m = 3.2808 ft = 1.0936 yd</td>
<td>1 ft = 0.333 yd = 0.3048 m</td>
</tr>
<tr>
<td></td>
<td>1 cm = 0.3937 in.</td>
<td>1 in. = 2.54 cm</td>
</tr>
<tr>
<td></td>
<td>1 km = 0.6214 mile</td>
<td>1 mile = 0.869 nautical mile</td>
</tr>
<tr>
<td>Area</td>
<td>1 m² = 10.7643 ft²</td>
<td>1 ft² = 0.0929 m²</td>
</tr>
<tr>
<td></td>
<td>1 km² = 0.3861 mi²</td>
<td>1 mi² = 2.59 km²</td>
</tr>
<tr>
<td></td>
<td>1 ha = 2.4710 acre</td>
<td>1 acre = 43,560 ft²</td>
</tr>
<tr>
<td>Volume</td>
<td>1 L = 0.2642 gal</td>
<td>1 gal = 4 qt = 3.7854 L</td>
</tr>
<tr>
<td></td>
<td>1 ml = 1 cm³</td>
<td>1 ft³ = 7.481 gal</td>
</tr>
<tr>
<td>Mass</td>
<td>1 g = 0.0353 oz</td>
<td>1 oz = 28.3495 g</td>
</tr>
<tr>
<td></td>
<td>1 kg = 2.2046 lb</td>
<td>1 lb = 453.592 g</td>
</tr>
<tr>
<td>Force</td>
<td>1 N = 0.2248 lbf/ft</td>
<td>1 lbf = 4.4482 N</td>
</tr>
<tr>
<td>Density</td>
<td>1 kg/m³ = 0.2480 lb/ft³</td>
<td>1 lb/ft³ = 0.8345 kg/m³</td>
</tr>
<tr>
<td></td>
<td>1 g/cm³ = 6.2427 lb/ft³</td>
<td>1 lb/ft³ = 10.062 N/m³</td>
</tr>
<tr>
<td>Pressure</td>
<td>1 kPa = 0.145 psi</td>
<td>1 atm = 14.7 psi</td>
</tr>
<tr>
<td>Energy and Power</td>
<td>1 J = 1.00 W·s = 0.7376 ft-lbf</td>
<td>1 lbf·ft = 1.3558 J</td>
</tr>
<tr>
<td></td>
<td>1 kJ = 2777.8 W·h = 9488 Btu</td>
<td>1 Btu = 1.0551 kJ</td>
</tr>
<tr>
<td></td>
<td>1 W = 0.7376 ft-lbf/s = 3.4122 Btu/h</td>
<td>1 ft-lbf/s = 1.3558 W</td>
</tr>
<tr>
<td></td>
<td>1 kW = 1,3410 hp</td>
<td>1 hp = 550 ft-lbf/s</td>
</tr>
<tr>
<td>Flow</td>
<td>1 L/s = 15.85 gal/min = 2.119 ft³/min</td>
<td>1 gal/min = 0.1337 ft³/min = 0.0631 L/s</td>
</tr>
<tr>
<td>Concentration</td>
<td>mg/L = ppmₗ (in dilute solutions)</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

ASCE STANDARDS ... iii

PREFACE ... v

ACKNOWLEDGMENTS ... vii

UNIT CONVERSIONS ... ix

1.0 GENERAL ... 1
 1.1 Scope .. 1
 1.2 Definitions ... 1
 1.3 Identification of flood hazard areas 5
 1.4 Identification of flood-prone structures 5
 1.4.1 General ... 5
 1.4.2 Consideration for flood protective works 5
 1.4.3 Assignment of Flood Design Class to buildings and structures. 6
 1.4.3.1 Multiple flood design classes 6
 1.5 Basic design and construction requirements 6
 1.5.1 General ... 6
 1.5.2 Elevation requirements 6
 1.5.3 Foundation requirements 6
 1.5.3.1 Geotechnical considerations 6
 1.5.3.2 Foundation depth ... 6
 1.5.3.3 Foundation walls and wall footings 6
 1.5.3.4 Piers, posts, columns, or piles 6
 1.5.4 Use of fill .. 6
 1.5.5 Anchorage and connections 6
 1.6 Loads in flood hazard areas ... 7
 1.6.1 General ... 7
 1.6.2 Combination of loads .. 7

2.0 BASIC REQUIREMENTS FOR FLOOD HAZARD AREAS THAT ARE NOT IDENTIFIED AS COASTAL HIGH HAZARD AREAS AND COASTAL A ZONES 9
 2.1 Scope .. 9
 2.2 Development in floodways .. 9
 2.3 Elevation requirements ... 9
 2.4 Use of fill .. 9
 2.4.1 Structural fill .. 9
 2.5 Slabs-on-grade and footings 9
 2.5.1 Use of slabs-on-grade 9
 2.5.2 Footing design .. 9
 2.6 Foundation walls ... 9
 2.7 Enclosures below the design flood elevation 10
 2.7.1 Required openings in foundation walls and walls of enclosures . 10
 2.7.1.1 Openings in breakaway walls 10
 2.7.2 Design of openings .. 10
 2.7.2.1 Non-engineered openings 10
 2.7.2.2 Engineered openings 10
 2.7.3 Installation of openings 10

3.0 HIGH RISK FLOOD HAZARD AREAS 11
 3.1 Scope .. 11
 3.2 Alluvial fan areas .. 11
 3.2.1 Protective works in active alluvial fan areas 11
 3.3 Flash flood areas .. 11
 3.3.1 Protective works in flash flood areas 11
3.4 Mudslide areas

3.4.1 Protective works in mudslide areas

3.5 Erosion-prone areas

3.5.1 Protective works in erosion-prone areas

3.6 High velocity flow areas

3.6.1 Protective works in high velocity flow areas

3.7 Areas subject to wave action

3.7.1 Coastal High Hazard Areas and Coastal A Zones.

3.7.2 Other high velocity wave action areas

3.8 Ice jam and debris areas

3.8.1 Protective works in ice jam and debris areas

4.0 COASTAL HIGH HAZARD AREAS AND COASTAL A ZONES

4.1 Scope

4.1.1 Identification of Coastal High Hazard Areas and Coastal A Zones.

4.2 General

4.3 Siting

4.4 Elevation requirements

4.5 Foundation requirements

4.5.1 General

4.5.2 Special geotechnical considerations

4.5.3 Foundation depth

4.5.4 Use of fill

4.5.5 Deep foundations

4.5.5.1 Attachments to piles

4.5.5.2 Piles terminating in pile caps or grade beams that are at or below grade

4.5.5.3 Piles extending to superstructure (structure framing)

4.5.5.4 Wood piles

4.5.5.5 Steel H piles

4.5.5.6 Concrete-filled steel pipe piles and shells

4.5.5.7 Prestressed concrete piles and precast concrete piles

4.5.5.8 Cast-in-place concrete piles

4.5.6 Pile design

4.5.6.1 Pile capacity

4.5.6.2 Capacity of the supporting soils

4.5.6.3 Minimum penetration

4.5.6.4 Foundation pile spacing

4.5.6.5 Wood pile connections

4.5.6.6 Steel pile connections

4.5.6.7 Concrete pile connections

4.5.6.8 Pile splicing

4.5.6.9 Mixed types of piling and multiple types of installation methodology

4.5.7 Posts, piers, and columns

4.5.7.1 Wood posts

4.5.7.2 Reinforced masonry columns

4.5.7.3 Reinforced concrete columns

4.5.8 Footings, mats, rafts, and concrete slabs that support columns or walls

4.5.9 Pile caps

4.5.10 Grade beams

4.5.11 Bracing

4.5.12 Shear walls

4.5.13 Stem walls

4.6 Enclosed areas below design flood elevation

4.6.1 Breakaway walls

4.6.2 Openings in breakaway walls

4.7 Erosion control structures

5.0 MATERIALS

5.1 General

5.2 Specific materials requirements for flood hazard areas

5.2.1 Metal connectors and fasteners
C1 GENERAL

C1.1 Scope

C1.2 Definitions

C1.3 Identification of flood hazard areas

C1.4 Identification of flood-prone structures

C1.5 Basic design and construction requirements

C1.6 Loads in flood hazard areas

C1.7 Basic requirements for flood protective works

C1.8 Consideration for flood protective works

C2 BASIC REQUIREMENTS FOR FLOOD HAZARD AREAS THAT ARE NOT IDENTIFIED AS COASTAL HIGH HAZARD AREAS AND COASTAL A ZONES

C2.1 Scope

C2.2 Development in floodways

C2.3 Elevation requirements

C2.4 Use of fill

C2.5 Slabs-on-grade and footings

C2.6 Enclosures below the design flood elevation

C2.7 Foundation requirements

C2.8 Use of fill

C2.9 Geotechnical considerations

C3 HIGH RISK FLOOD HAZARD AREAS

C3.1 Scope

C3.2 Alluvial fan areas

C3.3 Flash flood areas

C3.4 Mudslide areas

C3.5 Erosion-prone areas

C3.6 High velocity flow areas

C3.7 Ice jam and debris areas

C4 COASTAL HIGH HAZARD AREAS AND COASTAL A ZONES

C4.1 Scope

C4.2 General

C4.3 Siting

C4.4 Elevation requirements

C4.5 Foundation requirements

C4.5.1 Shallow foundations in Coastal High Hazard Areas

C4.5.2 Shallow foundations in Coastal A Zones