Guidance on safe use of machinery

This publication is not to be regarded as a British Standard
Committee responsible for this Published Document

The preparation of this Published Document was entrusted to Technical Committee MCE/3, upon which the following bodies were represented.

Agricultural Engineers Association
Association of Manufacturers of Power Generating Systems
British Cables Association
British Compressed Air Society
British Fluid Power Association
Department for Business, Innovation and Skills
Food and Drink Federation
GAMBICA Association Ltd
Health and Safety Executive
Institute of Measurement and Control
Manufacturing Technologies Association
Safety Assessment Federation Limited
Contents

Introduction by Dave Bench viii
Foreword ix

Section 1: General 1
1.1 Scope 1
1.2 Normative references 1
1.3 Terms and definitions 2

Section 2: Strategy for selecting protective measures 5
2.1 General 5
2.2 Selection of protective measures 6
2.3 Avoidance of reasonably foreseeable misuse of guards and protective devices 7
2.4 Phases of machine life 7

Section 3: Risk assessment 9
3.1 General 9
3.2 Severity of harm 11
3.3 Probability of occurrence of harm 11
3.4 Risk evaluation 11
3.5 Documentation 12

Section 4: Identification of hazards 13
4.1 Hazards at machinery 13
4.2 Mechanical hazards 14
4.3 Non-mechanical hazards 28

Section 5: Aspects of machine design to eliminate or reduce risks 33
5.1 Design for safe use 33
5.2 Checks by user 33
5.3 Further considerations for safeguards 34
5.4 Controls 34
5.5 Indicators 37
5.6 Unexpected/unintended start-up 37
5.7 Measures for the escape and rescue of trapped persons 38
5.8 Clutches 38
5.9 Braking systems 39
5.10 Safety catches, overrun, runback and fall-back protection devices 41
5.11 Counterweights and similar devices 41
5.12 Rotating shafts, spindles and couplings 41
5.13 Feeding and take-off devices 43
5.14 Hydraulic and pneumatic systems 43
5.15 Electrical systems 43
5.16 Workholding devices 43
5.17 Lifting, handling and transport 44
5.18 Static and dynamic stability 44
5.19 Lubrication 45
5.20 Lighting 45
5.21 Hygiene and guard design 45
5.22 Safety markings, signs (pictograms) and written warnings 45
5.23 Access (see also Section 11) 46
5.24 Programmable systems 46

Section 6: Selection of safeguards 49
6.1 General 49
6.2 Where access to the hazard zone is not required during normal operation 51
6.3 Where access to the hazardous area can be required during normal operation 52
6.4 Where access to the hazard zone is required during normal operation 52
6.5 Access to the hazardous area for infrequent operation 52
Section 7: Guard design and construction 53
7.1 General 53
7.2 Types of guard 53
7.3 Guard construction 76
7.4 Anthropometric considerations 80

Section 8: Protective devices 81
8.1 Trip devices (see Figure 56 to Figure 61) 81
8.2 Pressure-sensitive cables (see Figure 67) 91
8.3 Hold-to-run control 93
8.4 Enabling device 93
8.5 Two-hand control device (see Figure 68) 93
8.6 Limiting and limited movement control devices 94
8.7 Mechanical restraint device (see Figure 69 and Figure 70) 95
8.8 Emergency operation – emergency stop and emergency switching off 97

Section 9: Interlocking 103
9.1 Functions of an interlock 103
9.2 Interlocking media 103
9.3 Interlocking methods for power interruption 103
9.4 Interlocking methods incorporating braking, purging, etc., and/or guard locking 105
9.5 Security of interlocking 106
9.6 Electrical interlocking devices 109
9.7 Mechanical interlocking devices 126
9.8 Pneumatic interlocking devices 128
9.9 Hydraulic interlocking devices 132

Section 10: Safety-related control systems associated with protective devices 135
10.1 General 135
10.2 Architectural considerations 135
10.3 Safety-related control systems 158

Section 11: Installation considerations 159
11.1 Layout of machinery and plant 159
11.2 Moving parts of machinery 159
11.3 Services 159

Section 12: Maintenance and safe working practices 161
12.1 General 161
12.2 Maintenance 161
12.3 Safe working practices 162
12.4 Supervisory control 167
12.5 Information and training 168

Annexes
Annex A (normative) Ergonomic data 171
Annex B (informative) Common types of failures associated with safety-related interlocking control systems 179
Annex C (informative) Essentials of a permit to work form 187

Bibliography 189

List of figures
Figure 1 – Enclosed tools at a power press 5
Figure 2 – Iterative process to reduce risk 10
Figure 3 – Individual parts of machines causing one or more types of injury, e.g. hazards at an abrasive wheel 14
Figure 4 – Entanglement caused by contact with a single rotating surface 15
Figure 5 – Entanglement caused by catching on projections or in gaps 16
Figure 6 – Drawing-in hazards between two counter-rotating parts 16
Figure 7 – Entanglement caused by catching between rotating and other moving parts 16
Figure 8 – Entanglement caused by catching between rotating and fixed parts 18
Figure 9 – Entanglement caused by catching in materials in motion (swarf) 18
Figure 10 – Friction and abrasion hazards 19
Figure 11 – Cutting hazards 20
Figure 12 – Shear hazards between two machine parts 21
Figure 13 – Shear hazards between a machinery part and a workpiece 22
Figure 14 – Removal of shear trap by design 22
Figure 15 – Gap cover to prevent shear trap 23
Figure 16 – Stabbing and puncture by flying objects 24
Figure 17 – Stabbing and puncture by rapidly moving parts of machinery or pieces of material 24
Figure 18 – Impact hazards 25
Figure 19 – Crushing hazards 26
Figure 20 – Drawing-in hazards between rotating and tangentially moving surfaces 27
Figure 21 – Roller conveyor: first idle roller free to prevent drawing-in 28
Figure 22 – Foot pedal protected from accidental operation by means of a cover 35
Figure 23 – Guarding of shafts and couplings: Fixed guard for a transmission shaft and coupling 42
Figure 24 – Tractor power take-off drives 42
Figure 25 – Telescopic type guard 43
Figure 26 – Fundamental considerations involved in guarding a machine 49
Figure 27 – Fixed enclosing guard constructed of wire mesh and angle section preventing access to transmission machinery from all directions 54
Figure 28 – Fixed guards for chains and chain wheels 55
Figure 29 – Example of a quick release fixed guard 56
Figure 30 – Use of flat plate or angle section to prevent access to in-running nips 56
Figure 31 – Feeding material to a pair of rollers 57
Figure 32 – Small horizontal table, stiffened to prevent deflection, spanning the full width of a calender 57
Figure 33 – Use of fixed curve metal plates to prevent access to in-running nips 58
Figure 34 – Fixed guard that allows continuous observation of the in-running nip point 58
Figure 35 – Captive drawer 59
Figure 36 – Feeding of bulk material from the floor above the machine 60
Figure 37 – Transparent tunnel guard with conveyor belt 61
Figure 38 – Example of interlocked tunnel guard 61
Figure 39 – Example of interlocking tunnel guard on food preparation machinery 62
Figure 40 – Fixed distance guard fitted to a press brake 63
Figure 41 – Example of guarding an industrial robot with a perimeter fence type guard 64
Figure 42 – Close contour perimeter fence guard 64
Figure 43 – Power-operated guards and doors 66
Figure 44 – Balance weights to reduce the effort required to open a rise and fall guard 67
Figure 45 – Latch (restraint) to protect against gravity fall of an air-operated guard which has no balance weight 67
Figure 46 – Sensing guard fitted to a riveting gun 69
Figure 47 – Example of interlock on a hopper extension 70
Figure 48 – Adjustable guard for a radial or pedestal drilling machine 72
Figure 49 – Adjustable guard on a circular sawing machine 73
Figure 50 – Adjustable guard for the cutters of horizontal milling machines 73
Figure 51 – Self-adjusting guard arrangements for snipper cross-cut sawing machine 74
Figure 52 – False table and fixed guard applied to a milling machine 75
Figure 53 – False table and interlocking guard applied to a rotating table pie and tart machine 76
Figure 54 – Support for a horizontally sliding guard 79
Figure 55 – Opening in a fixed guard at a metal cutting guillotine 80
Figure 56 – Distance bar trip guard 82
Figure 57 – Trip device on a flat work ironing machine (calender) used in laundries 83
Figure 58 – Trip device for horizontal two-roll mills used in the rubber industry 84
Figure 59 – Trip device that protects against the hazards associated with goods on a conveyor passing into wrapping machinery 84
Figure 60 – Trip bar for mitigating the risk of trapping between a down-running conveyor and the casing of a final prover 85
Figure 61 – Trip device for drilling machines 86
Figure 62 – Electro-sensitive protective equipment using light curtains (AOPDs) as a trip and presence-sensing device at a press brake 87
Figure 63 – Electro-sensitive protective equipment using light curtains (AOPDs) as a trip device at a depalletizer 88
Figure 64 – Electro-sensitive protective equipment using light curtains (AOPDs) as presence-sensing devices at a robot-served pressure die casting machine 88
Figure 65 – Electro-sensitive protective equipment equipped with active opto-electronic devices responsive to diffuse reflection (AOPDDRs) used as trip and presence-sensing devices on an automated guided vehicle (AGV) 89
Figure 66 – Pressure-sensitive mat safeguarding the clamping and bending jaws of an automatic horizontal tube bender 91
Figure 67 – A typical pressure-sensitive cable installation used as a trip device 92
Figure 68 – Two-hand control device 94
Figure 69 – Augmenting an interlocking guard with a mechanical restraint device 96
Figure 70 – Mechanical restraint 97
Figure 71 – Emergency stop button 98
Figure 72 – Emergency stopping of conveyors 100
Figure 73 – Defeatability of sliding interlocking guards 107
Figure 74 – Defeatability of hinged interlocking guards 108
Figure 75 – Mounting of individual position switches 111
Figure 76 – Position switches or valves actuated by rotary cams 112
Figure 77 – Actuation of roller-operated position switches or valves by a cam 112
Figure 78 – Position switches actuated by rotary cams (guard in open position) 113
Figure 79 – Large hinged guards 113
Figure 80 – Position switch operating in the non-positive mode (incorrect application) 114
Figure 81 – Two position switches operating in opposite modes, mounted side-by-side, each actuated by its own cam mounted on the guard hinge 114
Figure 82 – Mounting of position switches in opposite modes 115
Figure 83 – Solenoid locking interlock switch 116
Figure 84 – Captive-key switch 117
Figure 85 – Time delay captive-key unit 117
Figure 86 – Trapped-key interlocking systems 118
Figure 87 – Practical application of the trapped-key interlocking system shown diagrammatically in Figure 86a) 119
Figure 88 – Internal mixing machine: example of the use of a trapped-key interlocking system 120
Figure 89 – Example use of a non-contact switch where an interlocking guard has to be removed 122
Figure 90 – Manually-operated delay device 124
Figure 91 – Locking a guard closed with a shotbolt 125
Figure 92 – Guard locking power interlocking 126
Figure 93 – Interlocking guard for positive clutch power press 127
Figure 94 – Principles of mechanical interlocking 128
Figure 95 – Diagrams for a cam-operated pneumatic interlocking valve 130
Introduction by Dave Bench

Health and Safety Executive Director of Science

The Health and Safety Executive (HSE) welcomes the publication by the British Standards Institution of PD 5304:2014, which was developed by Technical Committee MCE/3, Safeguarding of machinery, with contributions and support from HSE.

PD 5304:2014 covers the safe use of machinery and provides comprehensive guidance on practical measures and techniques that may be applied to machinery to safeguard operators, maintenance personnel and others. The guidance deals with issues ranging from risk assessment through safeguarding to maintenance and safe working practices, with practical examples throughout.

HSE recognizes that guidance on these topics is required for users of machinery to satisfy duties under the Provision and Use of Work Equipment Regulations 1998 (PUWER 98). PUWER 98 applies to any machine during modification, refurbishment or change of use, and this Published Document will provide guidance to those competent in relevant aspects of machinery safety carrying out these activities.

Developments in the field of machinery safety have been taken into account during the development of PD 5304:2014, and the principles of safeguarding are described with reference to current harmonized European machinery safety standards.

HSE is pleased to have contributed to and supported the development of PD 5304:2014 as its contents form an essential part of the technical framework that should be used to improve safety of machinery in the workplace. Its recommendations on the proper application of safeguards and safe working practices may also contribute towards safety in other sectors.

I am pleased to introduce PD 5304:2014 and commend its guidance to you as a valuable contribution to safe use of machinery in this country.

Dave Bench
Foreword

Publishing information
This Published Document is published by BSI Standards Limited, under licence from The British Standards Institution, and came into effect on 31 December 2014. It was prepared by Technical Committee MCE/3, Safeguarding of machinery. A list of organizations represented on this committee can be obtained on request to its secretary.

Supersession
This Published Document supersedes PD 5304:2005, which is withdrawn.

Information about this document
BS 5304:1988 was withdrawn following publication of a series of harmonized European machinery safety standards. Recognizing that BS 5304 contained valuable practical advice, PD 5304:2000, followed by PD 5304:2005, was published to retain the advice contained in BS 5304, with the addition of references to those relevant harmonized European machinery safety standards.

This edition takes account of the requirements of the current harmonized European machinery safety standards, to help the user maintain those safety requirements when upgrading, refurbishing or changing the use of machinery.

NOTE The Bibliography provides a link to an online list of harmonized European standards relevant to machinery safety.

Ensuring that risks associated with the use of machinery are eliminated or reduced is a task that requires unremitting and careful attention at all times. It is hoped that this Published Document will make a worthwhile contribution to the prevention of harm arising from the use of machinery. It is intended to serve as a useful guide to all those with responsibility for safe use of machinery and duties under the Health and Safety at Work etc. Act 1974 and the Provision and Use of Work Equipment Regulations 1998.

Figures are used to illustrate the general application of these principles. However, solutions other than those illustrated can be equally effective.

The safeguarding of machinery is continually being improved. Users of machinery need therefore to make themselves aware of any new codes of practice, etc., which might be published from time to time and any other relevant new developments.

The documents available as downloads from the sites referenced throughout the document were last accessed on 5 December 2014.

Presentational conventions
The guidance in this Published Document is presented in roman (i.e. upright) type. Any recommendations are expressed in sentences in which the principal auxiliary verb is “should”.

The word “may” is used in the text to express permissibility, e.g. as an alternative to the primary recommendation of the Clause. The word “can” is used to express possibility, e.g. a consequence of an action or an event.

Commentary, explanation and general informative material is presented in smaller italic type, and does not constitute a normative element.

Contractual and legal considerations
This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with a Published Document cannot confer immunity from legal obligations.
Section 1: General

1.1 Scope

This Published Document provides guidance on the safe use (see 1.3.22) of machinery, including that supplied prior to the implementation of the Supply of Machinery (Safety) Regulations 1992 [1].

It provides guidance on:

a) the basic principles of safeguarding, with reference to current harmonized European machinery safety standards; and

b) the continuing safe use of machinery manufactured in accordance with harmonized European machinery safety standards, in conjunction with the machine supplier’s instructions for use.

This Published Document is intended to promote a high standard of machinery safety. It describes and illustrates a variety of protective measures and explains methods by which it is possible to assess which measure(s) it is reasonable to adopt in particular circumstances. It is necessary, however, to consult specific legislation in applying the principles set down. Although reference is made to particular types of machine, specific recommendations are not given for every type of machine.

The guidance can be applied to machinery during its modification, refurbishment, upgrading or change of use in order to satisfy the Provision and Use of Work Equipment Regulations 1998 [2].

NOTE 1 See also Approved Code of Practice: Safe use of work equipment [3].

NOTE 2 Significant modification, refurbishment, upgrading or change of use to existing machinery that results in, for example, changes of the measures used to reduce risk(s) or the introduction of a new hazard(s), can make it necessary to satisfy relevant requirements from the Supply of Machinery (Safety) Regulations 1992 [1], in particular Schedule 3.

NOTE 3 PD 5304 is not intended to be used as an alternative to the current harmonized European machinery safety standards for machinery supplied in accordance with the Supply of Machinery (Safety) Regulations 1992 [1].

1.2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

BS EN 953, Safety of machinery – Guards – General requirements for the design and construction of fixed and movable guards ¹)

BS EN 1037, Safety of machinery – Prevention of unexpected start-up

BS EN 1837, Safety of machinery – Integral lighting of machines

BS EN 60947-4-1:2010+A1:2012, Low-voltage switchgear and controlgear – Part 4-1: Contactors and motor-starters – Electromechanical contactors and motor-starters

¹) BS EN 953 will eventually be superseded by BS EN ISO 14120.