IEEE Guide for Collecting, Categorizing, and Utilizing Information Related to Electric Power Distribution Interruption Events

IEEE Power and Energy Society

Sponsored by the Transmission and Distribution Committee
IEEE Guide for Collecting, Categorizing, and Utilizing Information Related to Electric Power Distribution Interruption Events

Sponsor

Transmission and Distribution Committee
of the
IEEE Power and Energy Society

Approved 27 March 2014

IEEE-SA Standards Board
Abstract: Reliability of electric power systems remains an important societal issue. While transmission disturbances draw national attention and scrutiny, service interruptions at the distribution level are the primary concern of the end-use customer and their regulatory and governmental representatives. Much effort has been expended in developing methods to uniformly and consistently quantify the reliability of distribution service based on electric system performance. However, the results of a nationwide survey of recorded information used for calculating distribution reliability indices performed in 1998 by the Working Group on System Design (now Distribution Reliability) indicate that significant inconsistencies exist in the data, categorization of that data, and in the collection processes used within the industry. This guide discusses the collection, categorization, and use of information related to electric power distribution interruption events and will be used in the development of industry guidelines. This guide presents a minimal set of data and a consistent categorization structure that, when used in combination with IEEE Std 1366™, will promote consistency in how the industry collects data for the purpose of benchmarking distribution system performance.

Keywords: benchmarking, data collection, IEEE 1782™, outage management systems, power distribution reliability, reliability management, sampling methods
Important Notices and Disclaimers Concerning IEEE Standards Documents

IEEE documents are made available for use subject to important notices and legal disclaimers. These notices and disclaimers, or a reference to this page, appear in all standards and may be found under the heading “Important Notice” or “Important Notices and Disclaimers Concerning IEEE Standards Documents.”

Notice and Disclaimer of Liability Concerning the Use of IEEE Standards Documents

IEEE Standards documents (standards, recommended practices, and guides), both full-use and trial-use, are developed within IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (“IEEE-SA”) Standards Board. IEEE (“the Institute”) develops its standards through a consensus development process, approved by the American National Standards Institute (“ANSI”), which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and participate without compensation from IEEE. While IEEE administers the process and establishes rules to promote fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the accuracy of any of the information or the soundness of any judgments contained in its standards.

IEEE does not warrant or represent the accuracy or content of the material contained in its standards, and expressly disclaims all warranties (express, implied and statutory) not included in this or any other document relating to the standard, including, but not limited to, the warranties of: merchantability; fitness for a particular purpose; non-infringement; and quality, accuracy, effectiveness, currency, or completeness of material. In addition, IEEE disclaims any and all conditions relating to: results; and workmanlike effort. IEEE standards documents are supplied “AS IS” and “WITH ALL FAULTS.”

Use of an IEEE standard is wholly voluntary. The existence of an IEEE standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity nor is IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing any IEEE Standards document, should rely upon his or her own independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate, seek the advice of a competent professional in determining the appropriateness of a given IEEE standard.

IN NO EVENT SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO: PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE UPON ANY STANDARD, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.

Translations

The IEEE consensus development process involves the review of documents in English only. In the event that an IEEE standard is translated, only the English version published by IEEE should be considered the approved IEEE standard.
Official statements

A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board Operations Manual shall not be considered or inferred to be the official position of IEEE or any of its committees and shall not be considered to be, or be relied upon as, a formal position of IEEE. At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear that his or her views should be considered the personal views of that individual rather than the formal position of IEEE.

Comments on standards

Comments for revision of IEEE Standards documents are welcome from any interested party, regardless of membership affiliation with IEEE. However, IEEE does not provide consulting information or advice pertaining to IEEE Standards documents. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Since IEEE standards represent a consensus of concerned interests, it is important that any responses to comments and questions also receive the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to comments or questions except in those cases where the matter has previously been addressed. For the same reason, IEEE does not respond to interpretation requests. Any person who would like to participate in revisions to an IEEE standard is welcome to join the relevant IEEE working group.

Comments on standards should be submitted to the following address:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
Piscataway, NJ 08854 USA

Laws and regulations

Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with the provisions of any IEEE Standards document does not imply compliance to any applicable regulatory requirements. Implementers of the standard are responsible for observing or referring to the applicable regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

IEEE draft and approved standards are copyrighted by IEEE under U.S. and international copyright laws. They are made available by IEEE and are adopted for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of engineering practices and methods. By making these documents available for use and adoption by public authorities and private users, IEEE does not waive any rights in copyright to the documents.

Photocopies

Subject to payment of the appropriate fee, IEEE will grant users a limited, non-exclusive license to photocopy portions of any individual standard for company or organizational internal use or individual, non-commercial use only. To arrange for payment of licensing fees, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.
Updating of IEEE Standards documents

Users of IEEE Standards documents should be aware that these documents may be superseded at any time by the issuance of new editions or may be amended from time to time through the issuance of amendments, corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the document together with any amendments, corrigenda, or errata then in effect.

Every IEEE standard is subjected to review at least every ten years. When a document is more than ten years old and has not undergone a revision process, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE standard.

In order to determine whether a given document is the current edition and whether it has been amended through the issuance of amendments, corrigenda, or errata, visit the IEEE-SA Website at http://ieeexplore.ieee.org/xpl/standards.jsp or contact IEEE at the address listed previously. For more information about the IEEE-SA or IEEE’s standards development process, visit the IEEE-SA Website at http://standards.ieee.org.

Errata

Errata, if any, for all IEEE standards can be accessed on the IEEE-SA Website at the following URL: http://standards.ieee.org/findstds/errata/index.html. Users are encouraged to check this URL for errata periodically.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect to the existence or validity of any patent rights in connection therewith. If a patent holder or patent applicant has filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed on the IEEE-SA Website at http://standards.ieee.org/about/sasb/patcom/patents.html. Letters of Assurance may indicate whether the Submitter is willing or unwilling to grant licenses under patent rights without compensation or under reasonable rates, with reasonable terms and conditions that are demonstrably free of any unfair discrimination to applicants desiring to obtain such licenses.

Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further information may be obtained from the IEEE Standards Association.
Participants

At the time this IEEE guide was completed, the System Design Working Group had the following membership:

Rodney Robinson*, Chair (2011-Present)
John McDaniel, Vice Chair
Val Werner*, Secretary

Barney Adler
John Ainscough
Dave Albergine
Daniel Arden
Greg Ardey
Ignacio Ares
Davood Asgharian
Jim Ashkar
Dustin Ballacy
John Banting
Karle Barczak
Philip Barker
Ryan Bartlett
Ed Beavers
Bill Becia
James Benaglio
Lina Bertling
William Beutler
Tom Bialek
Roy Billinton
Chantal Bitton
David Blankenheim
John Bolinger
Jim Boufford*
Vilet Bounam
Stephane Brule
Jason Bundren
James Burke
William Burley
Brandy Burnett
Thomas Callsen
Manuel Camara
Mark Carr
Patrick Carroll
Heide Caswell*
Cliff Cayer
Donald M. Chamberlin
M. L. Chan
Baden Chatterton
Dave Chetwynd
Bill Chisholm
Tony Chou
Rich Christie
Rob Christman
George Clark
Mike Clodfelder
James Cole
Betsy Coppock
Larry Conrad
Grace Couret

Tim Croushore
Bill Daily
Herve Delmas
Chuck DeNardo
Fred Dernert
Frank Doherty
April Dombrock
R. Clay Doyle
Jeff Duff
Herman Dyal
Mike Engel
Russ Erlich
Joe Eto
Charlie Fijnvandraat
Emilie Fisher
Doug Fitchett
Fred Friend
Keith Frost*
Justin Fuith
Anish Gaikwad
David Gilmer
Manuel Gonzalez
John Goodfellow
John Gordon
Tom Grisham
Tom Gutwin
Don Hall*
Jane Hammes
Randy Harlas
Keith Harley
Harry Hayes
David Haynes
Eric Helt
Jim Hettrick
Ray Hisayasu
Paul Hodges
Alex Hofmann
Tao Hong
Ian Hoogendam
Bob Howes
Mike Hyland
Cindy Janke
Allan Jirges
Joshua Jones
Robert Jones
Mark Kemper
John Kennedy
Mort Khodaei
Ann Kimber
Margaret Kirk
Mark Konya*
Frank Lambert
Dave Lankutis*
Ken Lau
Roger Lee
Jim Lemke
Jack Leonard
Giancarlo Leone
Gene Lindholm
Ray Lings
Nick Loehlein
Andrew Lozano
Susan Lovejoy
Ning Lu
Robert Manning
Ethan Matthes
Ed Mayer
Tom McCarthy
Tom McDermott
Mark McGranaghan
Steve McHardy
Kale Meade
Tom Menten
Bill Montgomery
J. C. Mathieson
Mathieu Mougeot
Jerry Murray
Peter Nedwick
Mike Nekola
Terry Nielsen
Denise Nikoloff
Gregory Obenchain
Ray O’Leary
Gregory Olson
Jamie Ortega
Anil Pahwa
Milorad Papic
Marc Patterson
Dan Pearson
Mike Pelsh
Charles Perry
Ray Piercy
Jeff Pogue
Steve Pullins
Henry Quach
Mike Rafferty
William Ranken
Alvin Razon
Caryn Riley
The following members of the individual balloting committee voted on this guide. Balloters may have voted for approval, disapproval, or abstention.

When the IEEE-SA Standards Board approved this guide on 27 March 2014, it had the following membership:

John Kulick, Chair
Jon Walter Rosdahl, Vice Chair
Richard H. Hulett, Past Chair
Konstantinos Karachalios, Secretary
Also included are the following nonvoting IEEE-SA Standards Board liaisons:

Richard DeBlasio, DOE Representative
Michael Janezic, NIST Representative

Julie Alessi
IEEE-SA Content Publishing

Erin Spiewak
IEEE-SA Standards Technical Community
Introduction

This guide was initiated by the desire of members of the working group to be able to have meaningful comparisons of reliability metrics. This guide was assembled to provide information regarding the collection, utilization, and categorization of information related to electric power distribution interruption events for the specific purpose of system reliability comparisons.

The purpose of this guide is to foster uniformity and consistency of collection of data among utilities in the trending and benchmarking of electric power distribution reliability to enable meaningful assessment of the performance of different electric utilities. In addition, this guide is intended to provide education and guidance with the assessment, trending, and benchmarking practices related to electric power distribution system reliability.

There is an industry need, given the widespread attempts to benchmark and compare electric power distribution reliability and the impact of such comparisons on key stakeholders including end-use electricity customers, utility companies, and governmental entities. The guide will describe recommended data collection, utilization, and categorization practices that should be followed to ensure fair and accurate trending and benchmark comparisons.
Contents

1. Overview ... 1
 1.1 Introduction ... 1
 1.2 Scope .. 2
 1.3 Purpose .. 2

2. Normative references ... 2

3. Data consistency and categorization for benchmarking surveys .. 2
 3.1 Overview ... 2
 3.2 Data collected during the interruption event process .. 3
 3.3 System characterization .. 3
 3.4 Interruption cause categories ... 4
 3.5 Responsible system ... 5
 3.6 Conditions ... 6
 3.7 Voltage level .. 6
 3.8 Interrupting devices ... 6
 3.9 Interrupting device initiation ... 7
 3.10 Customer restoration .. 7
 3.11 Equipment failure or deterioration .. 8

4. Data collection within the electric power distribution industry ... 9
 4.1 Overview ... 9
 4.2 Manual collection systems ... 9
 4.3 Fully automated outage system .. 10
 4.4 Implementation of various outage systems .. 10
 4.5 Interruption records during major events .. 18
 4.6 Data validation and auditing .. 19
 4.7 Trending and benchmarking .. 19

5. Data usage and practices ... 19
 5.1 Overview ... 19
 5.2 System indices overview ... 20
 5.3 Local performance impacts to system reliability to prioritize and select improvement opportunities 23
 5.4 Interruption information by cause ... 30
 5.5 Location and device-specific interruption information ... 35
 5.6 Identification, prioritization, program, and process activities to improve reliability 44
 5.7 Design, construction, and operating practices ... 57
 5.8 Benchmarking and goal setting ... 59
 5.9 External stakeholders .. 61
 5.10 Data use and reporting .. 63

Annex A (informative) Breakdown of interruption events by cause ... 69
 A.1 Interruption events by cause using CI and CMI ... 69
 A.2 Comparison of the number of interruption events by cause over a five year period 70
 A.3 Examples of wildlife breakdown by specific cause charts .. 70

Annex B (informative) Reliability considerations for protective devices ... 76
 B.1 Coordination concepts ... 76
 B.2 Fuse saving (during storms) ... 78

Annex C (informative) Reliability performance goals .. 79
1. Overview

1.1 Introduction

Benchmarking of distribution reliability performance has become commonplace in the electric power industry over the past several years despite the fact that useful comparisons are often difficult to make due to the data collection methods employed, differences in system design and operation, and differences in the environments. Many benchmarking studies have been established, each with its own criteria to define how data should be provided and analyzed. In order to arrive at meaningful conclusions, consistent interruption event data and categorization of that data are desirable (Werner et al. [B9]). IEEE Std 1366™ has defined a methodology that, if used, will provide a common way to segment data. The purpose of Interruption Reporting Practices Guide is to define data collection procedures. Clearly this is a large topic; therefore, this guide has been broken into the following three issues:

a) Data consistency and categorization for benchmarking surveys

b) Data collection within the electric power distribution industry

c) Data usage and practices

1 The numbers in brackets correspond to those of the bibliography in Annex E.
2 Information on references can be found in Clause 2.