Design of steel structures
Legal Notice for Standards

Canadian Standards Association (operating as “CSA Group”) develops standards through a consensus standards development process approved by the Standards Council of Canada. This process brings together volunteers representing varied viewpoints and interests to achieve consensus and develop a standard. Although CSA Group administers the process and establishes rules to promote fairness in achieving consensus, it does not independently test, evaluate, or verify the content of standards.

Disclaimer and exclusion of liability
This document is provided without any representations, warranties, or conditions of any kind, express or implied, including, without limitation, implied warranties or conditions concerning this document’s fitness for a particular purpose or use, its merchantability, or its non-infringement of any third party’s intellectual property rights. CSA Group does not warrant the accuracy, completeness, or currency of any of the information published in this document. CSA Group makes no representations or warranties regarding this document’s compliance with any applicable statute, rule, or regulation.

IN NO EVENT SHALL CSA GROUP, ITS VOLUNTEERS, MEMBERS, SUBSIDIARIES, OR AFFILIATED COMPANIES, OR THEIR EMPLOYEES, DIRECTORS, OR OFFICERS, BE LIABLE FOR ANY DIRECT, INDIRECT, OR INCIDENTAL DAMAGES, INJURY, LOSS, COSTS, OR EXPENSES, HOWSOEVER CAUSED, INCLUDING BUT NOT LIMITED TO SPECIAL OR CONSEQUENTIAL DAMAGES, LOST REVENUE, BUSINESS INTERRUPTION, LOST OR DAMAGED DATA, OR ANY OTHER COMMERCIAL OR ECONOMIC LOSS, WHETHER BASED IN CONTRACT, TORT (INCLUDING NEGLIGENCE), OR ANY OTHER THEORY OF LIABILITY, ARISING OUT OF OR RESULTING FROM ACCESS TO OR POSSESSION OR USE OF THIS DOCUMENT, EVEN IF CSA GROUP HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, INJURY, LOSS, COSTS, OR EXPENSES.

In publishing and making this document available, CSA Group is not undertaking to render professional or other services for or on behalf of any person or entity or to perform any duty owed by any person or entity to another person or entity. The information in this document is directed to those who have the appropriate degree of experience to use and apply its contents, and CSA Group accepts no responsibility whatsoever arising in any way from any and all use of or reliance on the information contained in this document.

CSA Group is a private not-for-profit company that publishes voluntary standards and related documents. CSA Group has no power, nor does it undertake, to enforce compliance with the contents of the standards or other documents it publishes.

Intellectual property rights and ownership
As between CSA Group and the users of this document (whether it be in printed or electronic form), CSA Group is the owner, or the authorized licensee, of all works contained herein that are protected by copyright, all trade-marks (except as otherwise noted to the contrary), and all inventions and trade secrets that may be contained in this document, whether or not such inventions and trade secrets are protected by patents and applications for patents. Without limitation, the unauthorized use, modification, copying, or disclosure of this document may violate laws that protect CSA Group’s and/or others’ intellectual property and may give rise to a right in CSA Group and/or others to seek legal redress for such use, modification, copying, or disclosure. To the extent permitted by licence or by law, CSA Group reserves all intellectual property rights in this document.

Patent rights
Attention is drawn to the possibility that some of the elements of this standard may be the subject of patent rights. CSA Group shall not be held responsible for identifying any or all such patent rights. Users of this standard are expressly advised that determination of the validity of any such patent rights is entirely their own responsibility.

Authorized use of this document
This document is being provided by CSA Group for informational and non-commercial use only. The user of this document is authorized to do only the following:

If this document is in electronic form:
• load this document onto a computer for the sole purpose of reviewing it;
• search and browse this document; and
• print this document if it is in PDF format.

Limited copies of this document in print or paper form may be distributed only to persons who are authorized by CSA Group to have such copies, and only if this Legal Notice appears on each such copy.

In addition, users may not and may not permit others to
• alter this document in any way or remove this Legal Notice from the attached standard;
• sell this document without authorization from CSA Group; or
• make an electronic copy of this document.

If you do not agree with any of the terms and conditions contained in this Legal Notice, you may not load or use this document or make any copies of the contents hereof, and if you do make such copies, you are required to destroy them immediately. Use of this document constitutes your acceptance of the terms and conditions of this Legal Notice.
Standards Update Service

S16-14
June 2014

Title: Design of steel structures

To register for e-mail notification about any updates to this publication
• go to shop.csa.ca
• click on CSA Update Service

The List ID that you will need to register for updates to this publication is 2422756.

If you require assistance, please e-mail techsupport@csagroup.org or call 416-747-2233.

Visit CSA Group’s policy on privacy at csagroup.org/legal to find out how we protect your personal information.
Contents

Technical Committee on Steel Structures for Buildings 12

Preface 16

1 Scope and application 18
1.1 General 18
1.2 Requirements 18
1.3 Application 18
1.4 Other standards 18
1.5 Terminology 19

2 Reference publications 19

3 Definitions and symbols 23
3.1 Definitions 23
3.2 Symbols 26
3.3 Units 32

4 Structural documents 33
4.1 General 33
4.2 Structural design documents 33
4.3 Fabrication and erection documents 34
4.3.1 Connection design details 34
4.3.2 Shop details 34
4.3.3 Erection diagrams 34
4.3.4 Erection procedures 34
4.3.5 Fieldwork details 34

5 Material — Standards and identification 35
5.1 Standards 35
5.1.1 General 35
5.1.2 Strength levels 35
5.1.3 Structural steel 35
5.1.4 Sheet steel 35
5.1.5 Cast steel 35
5.1.6 Forged steel 35
5.1.7 Bolts and bolt assemblies 35
5.1.8 Welding electrodes 35
5.1.9 Studs 35
5.1.10 Anchor rods 36
5.2 Identification 36
5.2.1 Methods 36
5.2.2 Unidentified structural steel 36
5.2.3 Tests to establish identification 36
5.2.4 Affidavit 36

6 Design requirements 36
6.1 General 36
6.1.1 Limit states 36
6.1.2 Structural integrity 37
6.2 Loads 37
6.2.1 Specified loads 37
6.2.2 Importance factors based on use and occupancy 37
6.3 Requirements under specified loads 37
6.3.1 Deflection 37
6.3.2 Camber 37
6.3.3 Dynamic effects 38
6.3.4 Resistance to fatigue 38
6.4 Requirements under factored loads 38
6.4.1 Strength 38
6.4.2 Overturning 38
6.5 Expansion and contraction 38
6.6 Corrosion protection 39
6.7 Requirements under fire conditions 39
6.8 Brittle fracture 39
6.9 Requirements under impulse loading 39

7 Factored loads and safety criterion 40
7.1 Safety during erection and construction 40
7.2 Safety criterion and effect of factored loads for the ultimate limit states 40

8 Analysis of structure 40
8.1 General 40
8.2 Types of construction 40
8.2.1 General 40
8.2.2 Rigidly connected and continuous construction 41
8.2.3 Simple construction 41
8.2.4 Semi-rigid (partially restrained) construction 41
8.3 Analysis methods 41
8.3.1 Elastic analysis 41
8.3.2 Plastic analysis 41
8.4 Stability effects 42

9 Stability of structures and members 42
9.1 Stability of structures 42
9.2 Stability of members 42
9.2.1 Initial misalignment at brace point 42
9.2.2 Displacement of bracing systems 42
9.2.3 Function of bracing 43
9.2.4 Twisting and lateral displacements 43
9.2.5 Simplified analysis 43
9.2.6 Detailed analysis 43
9.2.7 Slabs or decks 44
9.2.8 Accumulation of forces 44
9.2.9 Torsion 44
10 Design lengths and slenderness ratios 44
10.1 Simple span flexural members 44
10.2 Continuous span flexural members 45
10.3 Members in compression 45
10.3.1 General 45
10.3.2 Failure mode involving bending in-plane 45
10.3.3 Failure mode involving buckling 45
10.4 Slenderness ratios 45
10.4.1 General 45
10.4.2 Maximum slenderness ratio 45

11 Width (or diameter)-to-thickness — Elements in compression 46
11.1 Classification of sections 46
11.2 Maximum width (or diameter)-to-thickness ratios of elements subject to compression 46
11.3 Width and thickness 47

12 Gross and net areas 47
12.1 Application 47
12.2 Gross area 47
12.3 Net area 47
12.3.1 General 47
12.3.2 Allowance for bolt holes 48
12.3.3 Effective net area — Shear lag 48
12.3.4 Angles 49
12.3.5 Plug or slot welds 49
12.4 Pin-connected members in tension 49
12.4.1 Effective net areas 49
12.4.2 Detail requirements 50

13 Member and connection resistance 50
13.1 Resistance factors 50
13.2 Axial tension 50
13.3 Axial compression 51
13.3.1 Flexural buckling of doubly symmetric shapes 51
13.3.2 Flexural, torsional, or flexural-torsional buckling 51
13.3.3 Single-angle members in compression 52
13.3.4 Segmented members in compression 53
13.3.5 Members in compression subjected to elastic local buckling 54
13.4 Shear 54
13.4.1 Webs of flexural members with two flanges 54
13.4.2 Plastic analysis 56
13.4.3 Webs of flexural members not having two flanges 56
13.4.4 Pins 56
13.4.5 Gusset plates and coped beams 56
13.5 Bending — Laterally supported members 56
13.6 Bending — Laterally unsupported members 57
13.7 Lateral bracing for members in structures analyzed plastically 59
13.8 Axial compression and bending 60
13.8.1 General 60
13.8.2 Member strength and stability — Class 1 and Class 2 sections of I-shaped members
13.8.3 Member strength and stability — All classes of sections except Class 1 and Class 2 sections of I-shaped members
13.8.4 Value of U_1
13.8.5 Values of w_1
13.9 Axial tension and bending
13.10 Load bearing
13.11 Block shear — Tension member, beam, and plate connections
13.12 Bolts and local connection resistance
13.12.1 Bolts in bearing-type connections
13.12.2 Bolts in slip-critical connections
13.13 Welds
13.13.1 General
13.13.2 Shear
13.13.3 Tension normal to axis of weld
13.13.4 Compression normal to axis of weld
13.14 Welds and high-strength bolts in combination

14 Beams and girders
14.1 Proportioning
14.2 Flanges
14.3 Webs
14.3.1 Maximum slenderness
14.3.2 Web crippling and yielding
14.3.3 Openings
14.3.4 Effect of thin webs on moment resistance
14.4 Bearing stiffeners
14.5 Intermediate transverse stiffeners
14.6 Combined shear and moment
14.7 Rotational restraint at points of support
14.8 Copes
14.9 Lateral forces
14.10 Torsion

15 Trusses
15.1 Analysis
15.1.1 Simplified method
15.1.2 Detailed method
15.2 General requirements
15.2.1 Effective lengths of compression members
15.2.2 Joint eccentricities
15.2.3 Stability
15.2.4 Chord members
15.2.5 Web members
15.2.6 Compression chord supports
15.2.7 Maximum slenderness ratio of tension chords
15.2.8 Deflection and camber
15.3 Composite trusses
16 Open-web steel joists 75
16.1 Scope 75
16.2 General 75
16.3 Materials 75
16.4 Design documents 75
16.4.1 Building structural design documents 75
16.4.2 Joist design documents 76
16.5 Design 76
16.5.1 Loading for open-web steel joists 76
16.5.2 Design assumptions 76
16.5.3 Member and connection resistance 77
16.5.4 Width-to-thickness ratios 77
16.5.5 Bottom chord 77
16.5.6 Top chord 78
16.5.7 Webs 79
16.5.8 Spacers and battens 79
16.5.9 Connections and splices 79
16.5.10 Bearings 80
16.5.11 Anchorage 81
16.5.12 Deflection 81
16.5.13 Camber 81
16.5.14 Vibration 81
16.5.15 Welding 82
16.6 Stability during construction 82
16.7 Bridging 82
16.7.1 General 82
16.7.2 Installation 82
16.7.3 Types 82
16.7.4 Diagonal bridging 82
16.7.5 Horizontal bridging 82
16.7.6 Attachment of bridging 82
16.7.7 Anchorage of bridging 82
16.7.8 Bridging systems 83
16.7.9 Spacing of bridging 83
16.8 Decking 83
16.8.1 Decking to provide lateral support 83
16.8.2 Deck attachments 83
16.8.3 Diaphragm action 83
16.8.4 Cast-in-place slabs 83
16.8.5 Installation of steel deck 84
16.9 Shop coating 84
16.10 Manufacturing tolerances 84
16.11 Inspection and quality control 85
16.11.1 Inspection 85
16.11.2 Identification and control of steel 85
16.11.3 Quality control 85
16.12 Handling and erection 85
16.12.1 General 85
16.12.2 Erection tolerances 86
Composite beams, trusses, and joists

17.1 Application
17.2 Definitions
17.3 General
17.3.1 Deflections
17.3.2 Vertical shear
17.3.3 End connections
17.3.4 Steel deck
17.4 Design effective width of concrete
17.5 Slab reinforcement
17.5.1 General
17.5.2 Parallel reinforcement
17.5.3 Transverse reinforcement — Concrete slab on metal deck
17.5.4 Transverse reinforcement — Ribbed slabs
17.6 Interconnection
17.7 Shear connectors
17.7.1 General
17.7.2 End-welded studs
17.7.3 Channel connectors
17.8 Ties
17.9 Design of composite beams with shear connectors
17.10 Design of composite beams without shear connectors
17.11 Unshored beams
17.12 Beams during construction

Composite columns

18.1 Resistance prior to composite action
18.2 Concrete-filled hollow structural sections
18.2.1 General
18.2.2 Compressive resistance
18.2.3 Bending resistance
18.2.4 Axial compression and bending
18.3 Partially encased composite columns
18.3.1 General
18.3.2 Compressive resistance
18.3.3 Bending resistance
18.3.4 Axial compression and bending
18.3.5 Special reinforcement for seismic zones
18.4 Encased composite columns
18.4.1 General
18.4.2 Compressive resistance
18.4.3 Reinforcement
18.4.4 Columns with multiple steel shapes
18.4.5 Load transfer
18.4.6 Bending resistance

Built-up members

19.1 General
19.2 Members in compression
19.3 Members in tension 104
19.4 Open box-type beams and grillages 105

20 Plate walls 105
20.1 General 105
20.1.1 Definition 105
20.1.2 Lateral resistance 105
20.2 Seismic applications 106
20.3 Analysis 106
20.4 Angle of inclination 106
20.5 Limits on column and beam flexibilities 106
20.6 Infill plates 107
20.7 Beams 107
20.8 Columns 107
20.9 Anchorage of infill plates 107
20.10 Infill plate connections 107

21 Connections 108
21.1 Alignment of members 108
21.2 Unrestrained members 108
21.3 Restrained members 108
21.4 Connections of tension or compression members 109
21.5 Bearing joints in compression members 109
21.6 Lamellar tearing 109
21.7 Placement of fasteners and welds 109
21.8 Fillers 110
21.8.1 Fillers in bolted connections 110
21.8.2 Fillers in welded connections 110
21.9 Welds in combination 110
21.10 Fasteners and welds in combination 110
21.10.1 New connections 110
21.10.2 Existing connections 111
21.11 High-strength bolts (in slip-critical joints) and rivets in combination 111
21.12 Connected elements under combined tension and shear stresses 111

22 Design and detailing of bolted connections 111
22.1 General 111
22.2 Design of bolted connections 111
22.2.1 Use of snug-tightened high-strength bolts 111
22.2.2 Use of pretensioned high-strength bolts 111
22.2.3 Joints subject to fatigue loading 111
22.2.4 Effective bearing area 112
22.2.5 Fastener components 112
22.3 Detailing of bolted connections 112
22.3.1 Minimum pitch 112
22.3.2 Minimum edge distance 112
22.3.3 Maximum edge distance 112
22.3.4 Minimum end distance 112
22.3.5 Bolt holes 113
23 Installation and inspection of bolted joints 114
23.1 Connection fit-up 114
23.2 Surface conditions for slip-critical connections 114
23.3 Minimum bolt length 114
23.4 Use of washers 114
23.5 Storage of fastener components for pretensioned bolt assemblies 115
23.6 Snug-tightened bolt assemblies 115
23.7 Pretensioned high-strength bolt assemblies 115
23.7.1 Installation procedure 115
23.7.2 Turn-of-nut method 115
23.7.3 Use of ASTM F959 washers 116
23.7.4 Use of ASTM F1852 and ASTM F2280 bolts 116
23.8 Inspection procedures 116

24 Welding 116
24.1 Arc welding 116
24.2 Resistance welding 117
24.3 Fabricator and erector qualification 117

25 Column bases and anchor rods 117
25.1 Loads 117
25.2 Minimum number of anchor rods 117
25.3 Resistance 117
25.3.1 Concrete in compression 117
25.3.2 Tension 117
25.3.3 Shear 118
25.3.4 Anchor rods in shear and tension 118
25.3.5 Anchor rods in tension and bending 118
25.3.6 Moment on column base 119
25.4 Fabrication and erection 119
25.4.1 Fabrication 119
25.4.2 Erection 119

26 Fatigue 119
26.1 General 119
26.2 Proportioning 120
26.3 Live-load-induced fatigue 120
26.3.1 Calculation of stress range 120
26.3.2 Design criteria 120
26.3.3 Cumulative fatigue damage 120
26.3.4 Fatigue constants and detail categories 121
26.3.5 Limited number of cycles 121
26.4 Distortion-induced fatigue 121
26.5 High-strength bolts 121

27 Seismic design 122
27.1 General 122
27.1.1 Scope 122
27.1.2 Capacity design 122
27.1.3 Seismic load path 122
27.1.4 Members and connections supporting gravity loads 122
27.1.5 Material requirements 123
27.1.6 Bolted connections 124
27.1.7 Probable yield stress 124
27.1.8 Stability effects 124
27.1.9 Protected zones 125
27.2 Type D (ductile) moment-resisting frames, $R_d = 5.0, R_o = 1.5$ 125
 27.2.1 General 125
 27.2.2 Beams 125
 27.2.3 Columns 126
 27.2.4 Column joint panel zone 127
 27.2.5 Beam-to-column joints and connections 128
 27.2.6 Bracing 128
 27.2.7 Fasteners 129
 27.2.8 Protected zones 129
 27.3 Type MD (moderately ductile) moment-resisting frames, $R_d = 3.5, R_o = 1.5$ 129
 27.4 Type LD (limited-ductility) moment-resisting frames, $R_d = 2.0, R_o = 1.3$ 129
 27.4.1 General 129
 27.4.2 Beams and columns 130
 27.4.3 Column joint panel zone 130
 27.4.4 Beam-to-column connections 130
 27.5 Type MD (moderately ductile) concentrically braced frames, $R_d = 3.0, R_o = 1.3$ 131
 27.5.1 General 131
 27.5.2 Bracing systems 131
 27.5.3 Diagonal bracing members 132
 27.5.4 Brace connections 133
 27.5.5 Columns, beams, and connections other than brace connections 134
 27.5.6 Columns with braces intersecting between horizontal diaphragms 135
 27.5.7 Protected zones 135
 27.6 Type LD (limited-ductility) concentrically braced frames, $R_d = 2.0, R_o = 1.3$ 135
 27.6.1 General 135
 27.6.2 Bracing systems 135
 27.6.3 Diagonal bracing members 136
 27.6.4 Bracing connections 136
 27.6.5 Columns, beams, and other connections 136
 27.6.6 Columns with braces intersecting between horizontal diaphragms 136
 27.7 Type D (ductile) eccentrically braced frames, $R_d = 4.0, R_o = 1.5$ 137
 27.7.1 General 137
 27.7.2 Link beam 137
 27.7.3 Link resistance 138
 27.7.4 Link length 139
 27.7.5 Inelastic link rotation 139
 27.7.6 Link stiffeners 140
 27.7.7 Lateral support for link 141
 27.7.8 Link beam-to-column connection 141
 27.7.9 Beam outside the link 141
 27.7.10 Modular link-to-beam connections 142
 27.7.11 Diagonal braces 142
27.7.12 Brace-to-beam connection 143
27.7.13 Columns 143
27.7.14 Protected zone 143
27.8 Type D (ductile) buckling restrained braced frames, \(R_d = 4.0, R_o = 1.2\) 143
27.8.1 General 143
27.8.2 Bracing systems 144
27.8.3 Bracing members 144
27.8.4 Brace connections 145
27.8.5 Beams, columns, and connections other than brace connections 145
27.8.6 Testing 145
27.8.7 Protected zone 145
27.9 Type D (ductile) plate walls, \(R_d = 5.0, R_o = 1.6\) 146
27.9.1 General 146
27.9.2 Infill plates 146
27.9.3 Beams 146
27.9.4 Columns 147
27.9.5 Minimum stiffness for beams and columns 147
27.9.6 Column joint panel zones 147
27.9.7 Beam-to-column joints and connections 147
27.9.8 Protected zones 148
27.10 Type LD (limited-ductility) plate walls, \(R_d = 2.0, R_o = 1.5\) 148
27.10.1 General 148
27.10.2 Infill plates 148
27.10.3 Beams 148
27.10.4 Columns 149
27.10.5 Column joint panel zones 149
27.10.6 Beam-to-column joints and connections 149
27.11 Conventional construction, \(R_d = 1.5, R_o = 1.3\) 149
27.12 Special seismic construction 150

28 Shop and field fabrication and coating 150
28.1 Cambering, curving, and straightening 150
28.2 Thermal cutting 151
28.3 Sheared or thermally cut edge finish 151
28.4 Fastener holes 151
28.4.1 Drilled and punched holes 151
28.4.2 Holes at plastic hinges 151
28.4.3 Thermally cut holes 151
28.4.4 Alignment 151
28.5 Joints in contact bearing 152
28.6 Member tolerances 152
28.7 Cleaning, surface preparation, and shop coating 153
28.7.1 General 153
28.7.2 Uncoated steel 153
28.7.3 Coated steel 153
28.7.4 Special surfaces 154
28.7.5 Metallic zinc coatings 154

29 Erection 154
29.1 Temporary conditions 154
29.1.1 General 154
29.1.2 Temporary loads 154
29.1.3 Temporary bracing 155
29.1.4 Adequacy of temporary connections 155
29.2 Alignment 155
29.3 Erection tolerances 155
29.3.1 General 155
29.3.2 Elevation of base plates 155
29.3.3 Plumbness of columns 155
29.3.4 Horizontal alignment of members 156
29.3.5 Elevations of members 156
29.3.6 Crane runway beams 156
29.3.7 Alignment of braced members 156
29.3.8 Members with adjustable connections 156
29.3.9 Column splices 156
29.3.10 Welded joint fit-up 157
29.3.11 Bolted joint fit-up 157

30 Inspection 157
30.1 General 157
30.2 Co-operation 157
30.3 Rejection 157
30.4 Inspection of high-strength bolted joints 157
30.5 Third-party welding inspection 157
30.6 Identification of steel by marking 157

Annex A (informative) — Standard practice for structural steel 173
Annex B (informative) — Margins of safety 174
Annex C (normative) — Crane-supporting structures 176
Annex D (informative) — Recommended maximum values for deflections for specified design live, snow, and wind loads 177
Annex E (informative) — Floor vibrations 179
Annex F (informative) — Effective lengths of columns 180
Annex G (informative) — Criteria for estimating effective column lengths in continuous frames 182
Annex H (informative) — Deflections of composite beams, joists, and trusses due to shrinkage of concrete 184
Annex I (informative) — Arbitration procedure for pretensioning connections 188
Annex J (normative) — Qualification testing provisions for seismic moment connections and buckling restrained braces 189
Annex K (normative) — Structural design for fire conditions 191
Annex L (informative) — Design to prevent brittle fracture 203
Annex M (informative) — Seismic design of industrial steel structures 209
Technical Committee on Steel Structures for Buildings

R.B. Vincent
Vinmar Surface Coatings Inc, Westmount, Québec
Representing General Interest
Chair

M.I. Gilmor
Cast Connex Corporation, Toronto, Ontario
Representing Producer Interest
Vice-Chair

P.C. Birkemoe
University of Toronto, Toronto, Ontario
Representing General Interest

R. Bjorhovde
The Bjorhovde Group, Tucson, Arizona, USA
Associate

S. Boulanger
Supermétal, Saint-Laurent, Québec
Representing Producer Interest

M. Bruneau
University at Buffalo, Buffalo, New York, USA
Representing General Interest

L. Callele
Waiward Engineering, Edmonton, Alberta
Representing Producer Interest

B.D. Charnish
Entuitive Corporation, Toronto, Ontario
Representing User Interest

C. Christopoulos
University of Toronto, Toronto, Ontario
Associate

D. Clapp
Frazier Industrial Co., Long Valley, New Jersey, USA
Associate

M.P. Comeau
Campbell Comeau Engineering Limited, Halifax, Nova Scotia
Representing User Interest
J.R. Mark
Mississauga, Ontario
Representing General Interest

J.C. Martin
CWB Group,
Milton, Ontario
Representing General Interest

A.W. Metten
Bush, Bohlman & Partners,
Vancouver, British Columbia
Representing User Interest

C.J. Montgomery
DIALOG,
Edmonton, Alberta
Representing User Interest

T. Mulholland
Rack-Net-Works,
Mississauga, Ontario
Representing User Interest

P.K. Ostrowski
Ontario Power Generation Inc.,
Bowmanville, Ontario
Representing User Interest

J.A. Packer
University of Toronto,
Toronto, Ontario
Associate

C. Rogers
McGill University,
Montréal, Québec
Representing General Interest

R.M. Schuster
University of Waterloo,
Waterloo, Ontario
Associate

C.R. Taraschuk
National Research Council Canada,
Ottawa, Ontario
Representing Government and/or Regulatory Authority

A. Tiruneh
Alberta Municipal Affairs,
Edmonton, Alberta
Representing Government and/or Regulatory Authority

R. Tremblay
Ecole Polytechnique de Montréal,
Montréal, Québec
Representing General Interest
<table>
<thead>
<tr>
<th>T. Verhey</th>
<th>Walters Incorporated, Hamilton, Ontario</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Representing Producer Interest</td>
</tr>
<tr>
<td>E.J. Whalen</td>
<td>Canadian Institute of Steel Construction, Markham, Ontario</td>
</tr>
<tr>
<td>A.F. Wong</td>
<td>Canadian Institute of Steel Construction, Markham, Ontario</td>
</tr>
<tr>
<td></td>
<td>Representing Producer Interest</td>
</tr>
<tr>
<td>P.R. Zinn</td>
<td>Arpac Storage Systems Corporation, Delta, British Columbia</td>
</tr>
<tr>
<td>M. Braiter</td>
<td>CSA Group, Mississauga, Ontario</td>
</tr>
<tr>
<td>L. Jula Zadeh</td>
<td>CSA Group, Mississauga, Ontario</td>
</tr>
</tbody>
</table>
Preface

This Standard is appropriate for the design of a broad range of structures. It sets out minimum requirements and is expected to be used only by engineers competent in the design of steel structures. The following is a list of some of the more important changes made in this edition:

a) Clause 1.4 specifically prohibits the use of other standards for fabrication, erection and inspection.
b) The definition of “snug-tightness” has been clarified.
c) Information required on design documents has been augmented.
d) ASTM grades A500/A500M, A1085 and A913/A913M have been added as permissible steel grades for design.
e) The fire endurance design requirements have been restated to be in compliance with the NBCC.
f) Requirements under impulse loading have been added.
g) The initial misalignment of members at brace points has been clarified.
h) A calculation for the net area of a slotted HSS member has been given.
i) The minimum b/t for bearing stiffeners has been added.
j) The clause permitting a joist manufacturer to determine the joist resistance by testing has been removed.
k) Provisions for column stiffeners opposite of a rigidly connected beam by bolting have been provided.
l) Requirements for zinc/aluminum coated assemblies have been incorporated.
m) The use of plate washers in lieu of hardened washers is permitted in oversize or slotted holes.
n) The use of non-matching electrodes is permitted with reference to W59 for locations where this is permitted.
o) Clause 24 that referred to joint surface conditions for field welding in the previous edition has been removed and is now covered in CSA W47.1.
p) The factored resistance of anchor rods in bearing has been referred to CSA A23.3 to be consistent with other Canadian design standards.
q) A clarification on fatigue calculations has been made to include bending moments due to joint eccentricities.
r) An upper limit on the design force of single-storey buildings’ roof diaphragms has been provided.
s) A minimum Charpy V-notch value has been specified for weld of primary members and connections.
t) A maximum sulfur content for ASTM A913 used in seismic resisting systems is specified.
u) Additional criteria for joint connections has been added to ductile moment-resisting frames, limited ductility moment-resisting frames, and moderately ductile concentrically braced frames.
v) The design of link beams for ductile eccentrically braced frames has been expanded.
w) Detailing information for limited ductility plate walls have been given.
x) Annex K Structural design for fire conditions has been updated.
y) The clauses related to pin-connected members have been revised to clarify the net section and resistance requirements.
A commentary on this Standard, prepared by the Canadian Institute of Steel Construction with contributions from many members of the Technical Committee, comprises Part 2 of the Institute’s *Handbook of Steel Construction*.

This Standard is intended to be used with the provisions of the 2015 edition of the *National Building Code of Canada (NBCC)*, specifically Clause 7, which references the NBCC for load factors, load combinations, and other loading provisions.

This Standard was prepared by the Technical Committee on Steel Structures for Buildings, under the jurisdiction of the Strategic Steering Committee for Construction and Civil Infrastructure, and has been formally approved by the Technical Committee.

This edition of the CSA S16 is dedicated to the memories of Laurie Kennedy, André Picard, and Richard Redwood, three distinguished designers, researchers, and devoted educators committed to the advancement of steel standards.

Notes:

1) Use of the singular does not exclude the plural (and vice versa) when the sense allows.
2) Although the intended primary application of this Standard is stated in its Scope, it is important to note that it remains the responsibility of the users of the Standard to judge its suitability for their particular purpose.
3) This Standard was developed by consensus, which is defined by CSA Policy governing standardization — Code of good practice for standardization as “substantial agreement. Consensus implies much more than a simple majority, but not necessarily unanimity”. It is consistent with this definition that a member may be included in the Technical Committee list and yet not be in full agreement with all clauses of this Standard.
4) To submit a request for interpretation of this Standard, please send the following information to inquiries@csagroup.org and include “Request for interpretation” in the subject line:
 a) define the problem, making reference to the specific clause, and, where appropriate, include an illustrative sketch;
 b) provide an explanation of circumstances surrounding the actual field condition; and
 c) where possible, phrase the request in such a way that a specific “yes” or “no” answer will address the issue.

 Committee interpretations are processed in accordance with the CSA Directives and guidelines governing standardization and are available on the Current Standards Activities page at standardsactivities.csa.ca.

5) This Standard is subject to review five years from the date of publication. Suggestions for its improvement will be referred to the appropriate committee. To submit a proposal for change, please send the following information to inquiries@csagroup.org and include “Proposal for change” in the subject line:
 a) Standard designation (number);
 b) relevant clause, table, and/or figure number;
 c) wording of the proposed change; and
 d) rationale for the change.
1 Scope and application

1.1 General
This Standard provides rules and requirements for the design, fabrication, and erection of steel structures. The design is based on limit states. The term “steel structures” refers to structural members and frames that consist primarily of structural steel components, including the detail parts, welds, bolts, or other fasteners required in fabrication and erection. This Standard also applies to structural steel components in structures framed in other materials. The clauses related to fabrication and erection serve to show that design is inextricably a part of the design-fabrication-erection sequence and cannot be considered in isolation. For matters concerning standard practice pertinent to the fabrication and erection of structural steel not covered in this Standard, see Annex A.

1.2 Requirements
Requirements for steel structures such as bridges, antenna towers, offshore structures, and cold-formed steel structural members are given in other CSA Group Standards.

1.3 Application
This Standard applies unconditionally to steel structures, except that supplementary rules or requirements might be necessary for:

a) unusual types of construction;
b) mixed systems of construction;
c) steel structures that
 i) have great height or spans;
 ii) are required to be movable or be readily dismantled;
 iii) are exposed to severe environmental conditions;
 iv) are exposed to severe loads such as those resulting from vehicle impact or explosion;
 v) are required to satisfy aesthetic, architectural, or other requirements of a non-structural nature;
 vi) employ materials or products not listed in Clause 5; or
 vii) have other special features that could affect the design, fabrication, or erection;
d) tanks, stacks, other platework structures, poles, and piling; and
e) crane-supporting structures.

1.4 Other standards
The use of other standards for the design, fabrication, erection, and/or inspection of members or parts of steel structures is neither warranted nor acceptable except where specifically directed in this Standard. The design formulas provided in this Standard may be supplemented by a rational design based on theory, analysis, and engineering practice acceptable to the regulatory authority, provided that nominal margins (or factors) of safety are at least equal to those intended in the provisions of this Standard. The substitution of other standards or criteria for fabrication, erection, and/or inspection is expressly prohibited unless specifically directed in this Standard.