Hooks

Safety Standard for Cableways, Cranes, Derricks, Hoists, Hooks, Jacks, and Slings
Hooks

Safety Standard for Cableways, Cranes, Derricks, Hoists, Hooks, Jacks, and Slings
The next edition of this Standard is scheduled for publication in 2019. This Standard will become effective 1 year after the Date of Issuance.

ASME issues written replies to inquiries concerning interpretations of technical aspects of this Standard. Interpretations are published on the ASME Web site under the Committee Pages at http://cstools.asme.org as they are issued and will also be published within the next edition of the Standard.

Errata to codes and standards may be posted on the ASME Web site under the Committee Pages to provide corrections to incorrectly published items, or to correct typographical or grammatical errors in codes and standards. Such errata shall be used on the date posted.

The Committee Pages can be found at http://cstools.asme.org/. There is an option available to automatically receive an e-mail notification when errata are posted to a particular code or standard. This option can be found on the appropriate Committee Page after selecting “Errata” in the “Publication Information” section.

ASME is the registered trademark of The American Society of Mechanical Engineers.

This code or standard was developed under procedures accredited as meeting the criteria for American National Standards. The Standards Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed code or standard was made available for public review and comment that provides an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large.

ASME does not “approve,” “rate,” or “endorse” any item, construction, proprietary device, or activity.

ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable letters patent, nor assumes any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard.

ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASME procedures and policies, which precludes the issuance of interpretations by individuals.

No part of this document may be reproduced in any form,
in an electronic retrieval system or otherwise,
without the prior written permission of the publisher.

The American Society of Mechanical Engineers
Two Park Avenue, New York, NY 10016-5990

Copyright © 2014 by
THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS
All rights reserved
Printed in U.S.A.
CONTENTS

Foreword .. v
Committee Roster ... vii
B30 Standard Introduction .. ix
Summary of Changes .. xii

Chapter 10-0 Scope, Definitions, References, Personnel Competence, and Translations ... 1
Section 10-0.1 Scope of ASME B30.10 .. 1
Section 10-0.2 Definitions .. 1
Section 10-0.3 References .. 1
Section 10-0.4 Personnel Competence .. 2
Section 10-0.5 Translations ... 2

Chapter 10-1 Hooks: Selection, Use, and Maintenance 3
Section 10-1.1 Scope ... 3
Section 10-1.2 Training .. 3
Section 10-1.3 Materials and Components .. 3
Section 10-1.4 Fabrication and Configurations .. 3
Section 10-1.5 Design Factor ... 3
Section 10-1.6 Rated Loads .. 3
Section 10-1.7 Proof Test Requirements ... 3
Section 10-1.8 Identification ... 4
Section 10-1.9 Effects of Environment .. 4
Section 10-1.10 Inspection, Removal, and Repair 4
Section 10-1.11 Operating Practices ... 6

Chapter 10-2 Hooks — Miscellaneous: Selection, Use, and Maintenance 10
Section 10-2.1 Scope ... 10
Section 10-2.2 Training .. 10
Section 10-2.3 Materials and Components .. 10
Section 10-2.4 Fabrication and Configurations .. 10
Section 10-2.5 Design Factor ... 10
Section 10-2.6 Rated Loads .. 10
Section 10-2.7 Proof Test Requirements ... 10
Section 10-2.8 Identification ... 10
Section 10-2.9 Effects of Environment .. 10
Section 10-2.10 Inspection, Removal, and Repair 11
Section 10-2.11 Operating Practices ... 12

Figures
10-1.1-1 Clevis Hook (Latch — When Required) 7
10-1.1-2 Eye Hook (Latch — When Required) 7
10-1.1-3 Shank Hook (Latch — When Required) 7
10-1.1-4 Duplex Hook (Sister) (Latch — When Required) 7
10-1.1-5 Articulated Duplex Hook (Sister) (Latch — When Required) 7
10-1.1-6 Self-Locking Eye Hook (Open) ... 7
10-1.1-7 Self-Locking Clevis Hook (Closed) .. 8
10-1.1-8 Self-Closing Bail (Eye Hook) .. 8
10-1.1-9 Self-Closing Gate Latch (Shank Hook) 8
10-1.1-10 Self-Closing Flapper Latch (Shank Hook) 8
10-1.1-11 Self-Closing Flapper Latch (Swivel Hook) 8
10-1.1-12 Self-Closing Flipper Latch (Eye Hook) 8

Copyright © 2014 by the American Society of Mechanical Engineers.
No reproduction may be made of this material without written consent of ASME.
10-1.1-13 Self-Closing Tiplock Latch (Shank Hook) .. 9
10-1.1-14 Self-Closing Tiplock Latch (Eye Hook) .. 9
10-1.1-15 Single Plate Hook .. 9
10-1.1-16 Laminated Plate Hook .. 9
10-1.1-17 Quad Hook (Latch — When Required) 9
10-2.1-1 Eye Grab Hook .. 13
10-2.1-2 Clevis Grab Hook .. 13
10-2.1-3 Foundry Hook .. 13
10-2.1-4 Sorting Hook ... 13
10-2.1-5 Choker Hook ... 13
10-2.1-6 Clevis Foundry Hook ... 13

Table
10-1.7-1 Proof Test Load .. 4
FOREWORD

This American National Standard, Safety Standard for Cableways, Cranes, Derricks, Hoists, Hooks, Jacks, and Slings, has been developed under the procedures accredited by the American National Standards Institute (ANSI). This Standard had its beginning in December 1916 when an eight-page Code of Safety Standards for Cranes, prepared by an ASME Committee on the Protection of Industrial Workers, was presented at the annual meeting of ASME.

Meetings and discussions regarding safety on cranes, derricks, and hoists were held from 1920 to 1925 involving the ASME Safety Code Correlating Committee, the Association of Iron and Steel Electrical Engineers, the American Museum of Safety, the American Engineering Standards Committee (AESC) [later changed to American Standards Association (ASA), then to the United States of America Standards Institute (USASI), and finally to ANSI], Department of Labor — State of New Jersey, Department of Labor and Industry — State of Pennsylvania, and the Locomotive Crane Manufacturers Association. On June 11, 1925, AESC approved the ASME Safety Code Correlating Committee’s recommendation and authorized the project with the U.S. Department of the Navy, Bureau of Yards and Docks, and ASME as sponsors.

In March 1926, invitations were issued to 50 organizations to appoint representatives to a Sectional Committee. The call for organization of this Sectional Committee was sent out October 2, 1926, and the committee organized November 4, 1926, with 57 members representing 29 national organizations. Commencing June 1, 1927, and using the eight-page code published by ASME in 1916 as a basis, the Sectional Committee developed the Safety Code for Cranes, Derricks, and Hoists. The early drafts of this safety code included requirements for jacks but, due to inputs and comments on those drafts, the Sectional Committee decided in 1938 to make the requirements for jacks a separate code. In January 1943, ASA B30.2-1943 was published addressing a multitude of equipment types, and in August 1943, ASA B30.1-1943 was published just addressing jacks. Both documents were reaffirmed in 1952 and widely accepted as safety standards.

Due to changes in design, advancement in techniques, and general interest of labor and industry in safety, the Sectional Committee, under the joint sponsorship of ASME and the Bureau of Yards and Docks (now the Naval Facilities Engineering Command), was reorganized on January 31, 1962, with 39 members representing 27 national organizations. The new committee changed the format of ASA B30.2-1943 so that the multitude of equipment types it addressed could be published in separate volumes that could completely cover the construction, installation, inspection, testing, maintenance, and operation of each type of equipment that was included in the scope of ASA B30.2. This format change resulted in the initial publication of B30.3, B30.5, B30.6, B30.11, and B30.16 being designated as revisions of B30.2 with the remainder of the B30 volumes being published as totally new volumes. ASA changed its name to USASI in 1966 and ANSI in 1969, which resulted in B30 volumes from 1943 to 1968 being designated as ASA B30, USAS B30, or ANSI B30, depending on their date of publication.

In 1982, the Committee was reorganized as an Accredited Organization Committee, operating under procedures developed by ASME and accredited by ANSI. This Standard presents a coordinated set of rules that may serve as a guide to government and other regulatory bodies and municipal authorities responsible for the guarding and inspection of the equipment falling within its scope. The suggestions leading to accident prevention are given both as mandatory and advisory provisions; compliance with both types may be required by employers of their employees.

In case of practical difficulties, new developments, or unnecessary hardship, the administrative or regulatory authority may grant variances from the literal requirements or permit the use of other devices or methods but only when it is clearly evident that an equivalent degree of protection is thereby secured. To secure uniform application and interpretation of this Standard, administrative or regulatory authorities are urged to consult the B30 Committee, in accordance with the format described in Section IX of the Introduction, before rendering decisions on disputed points.

Safety codes and standards are intended to enhance public safety. Revisions result from committee consideration of factors such as technological advances, new data, and changing environmental and industry needs. Revisions do not imply that previous editions were inadequate.
The 2009 edition of B30.10 was rewritten entirely to improve the clarity of the Standard. This 2014 edition incorporates many global B30 changes, including the addition of personnel competence and translation requirements, as well as other revisions made throughout the document.

This edition of the B30.10 Volume was approved by the B30 Committee and ASME and was approved by ANSI and designated as an American National Standard on May 23, 2014.
ASME B30 COMMITTEE
Safety Standard for Cableways, Cranes, Derricks, Hoists, Hooks, Jacks, and Slings

(The following is the roster of the Committee at the time of approval of this Standard.)

STANDARDS COMMITTEE OFFICERS
L. D. Means, Chair
R. M. Parnell, Vice Chair
K. M. Hyam, Secretary

STANDARDS COMMITTEE PERSONNEL

N. E. Andrew, ThyssenKrupp Steel USA, LLC
C. M. Robison, Alternate, UT Battelle/Oak Ridge National Laboratory
G. Austin, Terex Corp.
T. L. Blanton, NACB Group, Inc.
R. O. Ohman, Alternate, Trainer
P. A. Boeckman, The Crosby Group, Inc.
C. E. Lucas, Alternate, The Crosby Group, Inc.
R. J. Bolen, Consultant
C. E. Cotton, Alternate, Navy Crane Center
M. E. Brunet, Manitowoc Cranes/The Manitowoc Crane Group
A. L. Calta, Alternate, Manitowoc Crane Group
B. Goslin, Craft Forensic Service
B. A. Pickett, Alternate, Forensic Engineering & Applied Science Institute
R. M. Cutshall, Savannah River Nuclear Solutions
J. A. Danielson, The Boeing Co.
P. W. Boyd, Alternate, The Boeing Co.
L. D. Demark, Jr., Equipment Training Solutions, LLC
D. F. Jordan, Alternate, BP America
D. Eckstine, Eckstine & Associates
H. G. Leidich, Alternate, Leidich Consulting Services, Inc.
R. J. Edwards, NBIS
A. J. Egging, National Oilwell Varco
C. W. Ireland, Alternate, Consultant, National Oilwell Varco
E. D. Fidler, The Manitowoc Co., Inc.
G. D. Miller, Alternate, Manitowoc Cranes
J. A. Gilbert, Associated Wire Rope Fabricators
J. L. Gordon, Acco Chain & Lifting Products
N. C. Hargreaves, Consultant, Terex Hargreaves Consulting, LLC
C. E. Imerman, Alternate, Link-Belt Construction Equipment Co.
G. B. Hetherston, E. I. DuPont
J. B. Greenwood, Alternate, Navy Crane Center
K. M. Hyam, The American Society of Mechanical Engineers
M. M. Jaxtheimer, Navy Crane Center
S. R. Gridley, Alternate, Navy Crane Center
P. R. Juhren, Morrow Equipment Co., LLC
M. J. Quinn, Alternate, Morrow Equipment Co., LLC
R. M. Kohner, Landmark Engineering Service
D. Duerr, Alternate, 2DM Associates, Inc.
A. J. Lusi, Jr., Lumark Consulting LLP
K. J. Shinn, Alternate, K. J. Shinn, Inc.
E. K. Marburg, Columbus McKinnon Corp.
J. R. Burke, Alternate, Columbus McKinnon Corp.
L. D. Means, Means Engineering & Consulting
D. A. Hafiger, Alternate, Bristol American
M. W. Mills, Liberty Mutual Group
D. L. Morgan, Mission Support Alliance
T. Mackey, Alternate, WRPS Hanford & URS Co.
W. E. Osborn, Ingersoll Rand
S. D. Wood, Alternate, Link-Belt Construction Equipment Co.
G. L. Owens, Consultant
R. M. Parnell, ITI Field Services Division
W. C. Dickinson, Jr., Alternate, Crane Industry Services, LLC
J. T. Perkins, Engineering Consultant
J. R. Schober, Alternate, American Bridge Co.
J. E. Richardson, U.S. Department of the Navy
K. Kennedy, Alternate, Navy Crane Center
D. W. Ritchie, Dave Ritchie Consultant, LLC
L. K. Shapiro, Alternate, Howard J. Shapiro & Associates
J. W. Rowland III, Consultant
D. A. Moore, Alternate, Unified Engineering
J. C. Ryan, Bob Bros Construction Co.
A. R. Ruud, Alternate, Atkinson Construction
D. W. Smith, STI Group
S. K. Rammelsberg, Alternate, CB&I
W. J. Smith, Jr., Nations Builder Insurance Service
J. Schoppert, Alternate, NBIS Claims & Risk Management
R. S. Stem, Lampson International, LLC
E. P. Vliet, Alternate, Turner Industries Group
R. G. Strain, Advanced Crane Technologies, LLC
J. Sturm, Sturm Corp.
P. D. Sweeney, General Dynamics Electric Boat
B. M. Casey, Alternate, General Dynamics Electric Boat
J. D. Wiethorn, Haag Engineering Co.
R. C. Wild, USACE Army Engineering District
E. B. Stewart, Alternate, U.S. Army Corps of Engineers
D. N. Wolff, National Crane/Manitowoc Crane Group
J. A. Pilgrim, Alternate, Manitowoc Crane
HONORARY MEMBERS

J. W. Downs, Jr., Downs Crane and Hoist Co.
J. J. Franks, Consultant
J. M. Klibert, Lift-All Co., Inc.
R. W. Parry, Consultant
P. S. Zorich, RZP Limited

B30.10 SUBCOMMITTEE PERSONNEL

P. A. Boeckman, Chair, The Crosby Group
W. B. Bickett, Jr., Babcock & Wilcox Co.
T. Cobb, Columbus McKinnon Forge Operations Chattanooga
J. A. Gilbert, Associated Wire Rope Fabricators
S. R. Gridley, Navy Crane Center
P. S. Hughes, RUD Chain

C. E. Lucas, The Crosby Group, Inc.
E. K. Marburg, Columbus McKinnon Corp.
J. A. Pilgrim, Manitowoc Cranes
K. Sellers, Gunnebo Johnson Corp.
P. S. Zorich, RZP Limited

B30 INTEREST REVIEW GROUP

P. W. Boyd, The Boeing Co.
M. J. Eggenberger, Bay Ltd.
H. A. Hashem, Saudi Aramco
J. Hui, School of Civil Engineering, People’s Republic of China
A. Mattoli, Prowinch, LLC

M. W. Osborne, E-Crane International USA
A. G. Rocha, Belgo Bekaert Arames
W. Rumburg, Crane Consultants, Inc.
C.-C. Tsaur, Institute of Occupational Safety on Health, Taiwan

B30 REGULATORY AUTHORITY COUNCIL

C. Shelhamer, Chair, New York City Department of Buildings
L. G. Campion, U.S. Department of Labor/OSHA
W. J. Dougherty, Jr., City of Philadelphia
C. Harris, City of Chicago — Department of Buildings
K. M. Hyam, The American Society of Mechanical Engineers

D. G. Merriman, New York State Department of Labor, Division of Safety & Health/PESH
C. R. Smith, Pennsylvania Department of State, Bureau of Professional and Occupational Affairs, Crane Board Member
SAFETY STANDARD FOR CABLEWAYS, CRANES, DERRICKS, HOISTS, HOOKS, JACKS, AND SLINGS

B30 STANDARD INTRODUCTION

SECTION I: SCOPE

The ASME B30 Standard contains provisions that apply to the construction, installation, operation, inspection, testing, maintenance, and use of cranes and other lifting and material-movement related equipment. For the convenience of the reader, the Standard has been divided into separate volumes. Each volume has been written under the direction of the ASME B30 Standard Committee and has successfully completed a consensus approval process under the general auspices of the American National Standards Institute (ANSI).

As of the date of issuance of this Volume, the B30 Standard comprises the following volumes:

- B30.1 Jacks, Industrial Rollers, Air Casters, and Hydraulic Gantries
- B30.2 Overhead and Gantry Cranes (Top Running Bridge, Single or Multiple Girder, Top Running Trolley Hoist)
- B30.3 Tower Cranes
- B30.4 Portal and Pedestal Cranes
- B30.5 Mobile and Locomotive Cranes
- B30.6 Derricks
- B30.7 Winches
- B30.8 Floating Cranes and Floating Derricks
- B30.9 Slings
- B30.10 Hooks
- B30.11 Monorails and Underhung Cranes
- B30.12 Handling Loads Suspended From Rotorcraft
- B30.13 Storage/Retrieval (S/R) Machines and Associated Equipment
- B30.14 Side Boom Tractors
- B30.15 Mobile Hydraulic Cranes
 (withdrawn 1982 — requirements found in latest revision of B30.5)
- B30.16 Overhead Hoists (Underhung)
- B30.17 Overhead and Gantry Cranes (Top Running Bridge, Single Girder, Underhung Hoist)
- B30.18 Stacker Cranes (Top or Under Running Bridge, Multiple Girder With Top or Under Running Trolley Hoist)
- B30.19 Cableways
- B30.20 Below-the-Hook Lifting Devices
- B30.21 Lever Hoists
- B30.22 Articulating Boom Cranes
- B30.23 Personnel Lifting Systems
- B30.24 Container Cranes
- B30.25 Scrap and Material Handlers
- B30.26 Rigging Hardware
- B30.27 Material Placement Systems
- B30.28 Balance Lifting Units
- B30.29 Self-Erecting Tower Cranes
- B30.30 Ropes

SECTION II: SCOPE EXCLUSIONS

Any exclusion of, or limitations applicable to the equipment, requirements, recommendations, or operations contained in this Standard are established in the affected volume’s scope.

SECTION III: PURPOSE

The B30 Standard is intended to
(a) prevent or minimize injury to workers, and otherwise provide for the protection of life, limb, and property by prescribing safety requirements
(b) provide direction to manufacturers, owners, employers, users, and others concerned with, or responsible for, its application
(c) guide governments and other regulatory bodies in the development, promulgation, and enforcement of appropriate safety directives

SECTION IV: USE BY REGULATORY AGENCIES

These volumes may be adopted in whole or in part for governmental or regulatory use. If adopted for governmental use, the references to other national codes and standards in the specific volumes may be changed to refer to the corresponding regulations of the governmental authorities.

SECTION V: EFFECTIVE DATE

(a) Effective Date. The effective date of this Volume of the B30 Standard shall be 1 yr after its date of issuance.

This volume is currently in the development process.