Special Notes

API publications necessarily address problems of a general nature. With respect to particular circumstances, local, state, and federal laws and regulations should be reviewed.

Neither API nor any of API’s employees, subcontractors, consultants, committees, or other assignees make any warranty or representation, either express or implied, with respect to the accuracy, completeness, or usefulness of the information contained herein, or assume any liability or responsibility for any use, or the results of such use, of any information or process disclosed in this publication. Neither API nor any of API’s employees, subcontractors, consultants, or other assignees represent that use of this publication would not infringe upon privately owned rights.

API publications may be used by anyone desiring to do so. Every effort has been made by the Institute to assure the accuracy and reliability of the data contained in them; however, the Institute makes no representation, warranty, or guarantee in connection with this publication and hereby expressly disclaims any liability or responsibility for loss or damage resulting from its use or for the violation of any authorities having jurisdiction with which this publication may conflict.

API publications are published to facilitate the broad availability of proven, sound engineering and operating practices. These publications are not intended to obviate the need for applying sound engineering judgment regarding when and where these publications should be utilized. The formulation and publication of API publications is not intended in any way to inhibit anyone from using any other practices.

Any manufacturer marking equipment or materials in conformance with the marking requirements of an API standard is solely responsible for complying with all the applicable requirements of that standard. API does not represent, warrant, or guarantee that such products do in fact conform to the applicable API standard.

Users of this Recommended Practice should not rely exclusively on the information contained in this document. Sound business, scientific, engineering, and safety judgment should be used in employing the information contained herein.
Foreword

Nothing contained in any API publication is to be construed as granting any right, by implication or otherwise, for the manufacture, sale, or use of any method, apparatus, or product covered by letters patent. Neither should anything contained in the publication be construed as insuring anyone against liability for infringement of letters patent.

Shall: As used in a standard, “shall” denotes a minimum requirement in order to conform to the specification.

Should: As used in a standard, “should” denotes a recommendation or that which is advised but not required in order to conform to the specification.

This document was produced under API standardization procedures that ensure appropriate notification and participation in the developmental process and is designated as an API standard. Questions concerning the interpretation of the content of this publication or comments and questions concerning the procedures under which this publication was developed should be directed in writing to the Director of Standards, American Petroleum Institute, 1220 L Street, NW, Washington, DC 20005. Requests for permission to reproduce or translate all or any part of the material published herein should also be addressed to the director.

Generally, API standards are reviewed and revised, reaffirmed, or withdrawn at least every five years. A one-time extension of up to two years may be added to this review cycle. Status of the publication can be ascertained from the API Standards Department, telephone (202) 682-8000. A catalog of API publications and materials is published annually by API, 1220 L Street, NW, Washington, DC 20005.

Suggested revisions are invited and should be submitted to the Standards Department, API, 1220 L Street, NW, Washington, DC 20005, standards@api.org.
Introduction

In today’s operating environment, it is not enough to base future inspection plans only on prior recorded/known history of equipment condition. A fundamental understanding of the process/operating conditions and resulting damage mechanisms are required in order to establish and maintain an inspection program that yields the highest probability of detecting potential damage. Inspection plans should be dynamic and account for changing process conditions and current equipment condition. A fundamental step is to frequently rationalize and align the developed degradation knowledge base of the materials of construction with the operation of the equipment, its inspection history, measured corrosion rates and known industry problems. With the move to risk based inspection programs, it is even more vital to identify and track process information that validates or might cause changes to existing inspection plans.

In order to maintain the integrity and reliability of pressure equipment in the refining and petrochemical industry, several process safety management systems are necessary. Many of those management systems are oriented toward having a rigorous inspection program, as well as all the supportive engineering activities, to maintain pressure equipment integrity and reliability.

In addition to the application of industry codes, standards, and recommended practices, a number of other PSM systems are vital to support a rigorous inspection and mechanical integrity program in order to predict/avoid/prevent pressure equipment damage/corrosion; leaks and failures; and improve reliability. Three key elements of those supporting PSM programs include:

— the establishment, implementation, and maintenance of integrity operating windows (IOW’s);

— an effective transfer of knowledge about unit specific IOW’s to all affected personnel; and

— an effective MOC program to identify any changes to the process or the physical hardware that might affect the integrity of pressure equipment.

In order to operate any process unit, a set of operating ranges and limits needs to be established for key process variables, to achieve the desired results (i.e. product within specification, safe operation, reliability, etc.). These limits are generally called operating limits or operating envelopes. IOW’s are a specific subset of these key operating limits that focus only on maintaining the integrity or reliability of process equipment. Typically IOW’s address issues that involve process variables that, when not adequately monitored or controlled, can impact the likelihood and rates of damage mechanisms, which may result in a loss of containment.

For purposes of this document, maintaining the integrity of the process unit means avoiding breaches of containment, and reliability means avoiding malfunctions of the pressure equipment that might impact the performance of the process unit (meeting its intended function for a specified time frame). In that sense, integrity is a part of the larger issue of pressure equipment reliability, since most breaches of containment will impact reliability. IOWs are those preset limits on process variables that need to be established and implemented in order to prevent potential breaches of containment that might occur as a result of not controlling the process sufficiently to avoid unexpected or unplanned deterioration or damage to pressure equipment. Operation within the preset limits should result in predictable and reasonably low rates of degradation. Operation outside the IOW limits could result in unanticipated damage, accelerated damage and potential equipment failure from one or more damage mechanisms.

Pressure equipment is generally fabricated from the most economical materials of construction to meet specific design criteria based on the intended operation and process conditions. The operating process conditions should then be controlled within preset limits (IOW’s) in order to avoid unacceptable construction material degradation and achieve the desired economic design life of the assets.

One of the simplest examples of IOWs is the establishment of fired heater tube temperature limits to avoid premature rupture or unplanned replacement of the tubes. For example, heater tubes that have an API 530, 100,000 hour design temperature of 950 °F (510 °C) would have an increasingly shortened service life if operated at temperatures
above this design temperature. So when this limit (950 °F) is exceeded, operators would be directed to adjust fired heater controls to get the tube temperature back to below 950 °F (510 °C) within a preset amount of time. That limit of 950 °F (510 °C) would be an IOW limit for those fired heater tubes. At an even higher temperature, say 1025 °F (550 °C), the operator might be directed to take more immediate actions to regain control or even shut down the fired heater. As such there may be more than one IOW limit for the same process parameter (in this case fired heater tube temperature), for tracking/trending or to gain control prior to reaching a critical IOW limit. In addition, there may be more than one predefined response, depending upon the degree of exceedance of the process parameter limit.

A properly structured, efficient, and effective inspection program depends on IOW’s being established and implemented to improve inspection planning and to avoid unanticipated impacts on pressure equipment integrity. Inspection plans are typically based on historic damage mechanisms and trends and are not generally designed to look for unanticipated damage resulting from process variability and upsets. Inspection plans generally assume that the next inspection interval (calculated based on prior damage rates from past operating experience) are scheduled on the basis of what is already known and predictable about equipment degradation from previous inspections. Without a set of effective and complete IOW’s and feedback loop into the inspection planning process, inspections might need to be scheduled on a more frequent time-based interval just to look for anything that might potentially occur from process variability.
Integrity Operating Windows

1 Purpose and Scope

1.1 The purpose of this recommended practice (RP) is to explain the importance of integrity operating windows (IOW's) for process safety management and to guide users in how to establish and implement an IOW program for refining and petrochemical process facilities for the express purpose of avoiding unexpected equipment degradation that could lead to loss of containment. It is not the intent of this document to provide a complete list of specific IOW's or operating variables that might need IOW's for the numerous types of hydrocarbon process units in the industry (though some generic examples are provided in the text and in Annex A); but rather to provide the user with information and guidance on the work process for development and implementation of IOW's to help strengthen the Mechanical Integrity (MI) program for each process unit.

1.2 The scope of this standard includes:

— definitions of IOW's and related terminology;
— creating and establishing IOW's;
— data and information typically needed to establish IOW's;
— descriptions of the various types of IOW's needed for process units;
— risk ranking IOW's;
— documenting and implementing IOW's;
— monitoring and measuring process variables within established IOW's;
— communication of IOW exceedances;
— reviewing, changing, and updating IOW's;
— integrating IOW's with other risk management practices;
— roles and responsibilities in the IOW work process; and
— knowledge transfer to affected personnel.

1.3 This RP outlines the essential elements in defining, monitoring and maintaining IOW's as a vital component of integrity management (materials degradation control) and assisting in the inspection planning process, including Risk Based Inspection (RBI). Other Process Safety systems may be affected by or involved with the IOW program, including management of change (MOC), process safety information (PSI), and training. For purposes of this RP, these systems are only addressed to the extent of mentioning the integration aspects that are needed with the IOW program.

The use of this RP for its intended purpose is entirely voluntary for owner-users. There are no requirements that any organization use it. It is intended to be useful to those organizations that wish to establish and implement IOW's.

1.4 This RP does not cover other operating windows established for normal process control for the purposes of maintaining product quality and other PSM issues including avoidance of operating error, that do not relate to control for the purpose of maintaining equipment integrity and envelopes. However, IOW's should be integrated into existing systems for managing other operating variables and envelopes.