Guidelines for Pressure Boundary Bolted Flange Joint Assembly
INTENTIONALLY LEFT BLANK
Guidelines for Pressure Boundary Bolted Flange Joint Assembly
This Standard will be revised when the Society approves the issuance of a new edition.

ASME issues written replies to inquiries concerning interpretations of technical aspects of this document. Interpretations are published on the ASME Web site under the Committee Pages at http://cstools.asme.org/ as they are issued.

ASME is the registered trademark of The American Society of Mechanical Engineers.

This code or standard was developed under procedures accredited as meeting the criteria for American National Standards. The Standards Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed code or standard was made available for public review and comment that provides an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large.

ASME does not “approve,” “rate,” or “endorse” any item, construction, proprietary device, or activity.

ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable letters patent, nor assumes any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard.

ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASME procedures and policies, which precludes the issuance of interpretations by individuals.

No part of this document may be reproduced in any form,
in an electronic retrieval system or otherwise,
without the prior written permission of the publisher.

The American Society of Mechanical Engineers
Two Park Avenue, New York, NY 10016-5990

Copyright © 2013 by
THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS
All rights reserved
Printed in U.S.A.
CONTENTS

Foreword .. v
Committee Roster ... vi

1 Scope. ... 1
2 Introduction ... 1
3 Training and Qualification of Bolted Joint Assembly Personnel .. 1
4 Cleaning and Examination of Flange and Fastener Contact Surfaces ... 1
5 Alignment of Flanged Joints .. 2
6 Installation of Gasket .. 2
7 Lubrication of “Working” Surfaces .. 5
8 Installation of Bolts ... 5
9 Numbering of Bolts ... 6
10 Tightening of Bolts .. 6
11 Tightening Sequence .. 13
12 Target Torque Determination .. 16
13 Joint Pressure and Tightness Testing .. 16
14 Records ... 16
15 Joint Disassembly ... 17
16 References ... 20

Figures
1 Indicator-Type Bolting for Through-Bolted Joints .. 11
2 Indicator-Type Bolting for Studded Joints .. 12
3 Example Legacy and Alternative to Legacy Numbering Sequences for 12-Bolt Joint .. 14
4 48-Bolt Flange Bolt-Grouping Example ... 15
5 Example Short Assembly Record .. 17
6 Example Medium-Length Assembly Record ... 18
7 Example Long Assembly Record .. 19

Tables
1M Reference Values for Calculating Target Torque Values for Low-Alloy Steel Bolting Based on Target Prestress of 345 MPa (Root Area) (SI Units) 3
1 Reference Values for Calculating Target Torque Values for Low-Alloy Steel Bolting Based on Target Prestress of 50 ksi (Root Area) (U.S. Customary Units) .. 4
2 Torque Increments for Legacy Cross-Pattern Tightening Using a Single Tool 7
3 Recommended Tool, Tightening Method, and Load-Control Technique Selection Based on Service Applications ... 7
4 Legacy Cross-Pattern Tightening Sequence and Bolt-Numbering System When Using a Single Tool .. 8
4.1 Alternative to Legacy Cross-Pattern Tightening Sequence and Bolt-Numbering System When Using a Single Tool 9
Appendices

A Training and Qualification of Bolted Joint Assembly Personnel 23
B Description of Common Terms ... 39
C Recommended Gasket Contact Surface Finish for Various Gasket Types 41
D Guidelines for Allowable Gasket Contact Surface Flatness and Defect
 Depth .. 42
E Flange Joint Alignment Guidelines .. 48
F Alternatives to Legacy Tightening Sequence/Pattern 51
G Use of Contractors Specializing in Bolting Services 65
H Bolt Root and Tensile Stress Areas ... 66
I Interaction During Tightening ... 67
J Calculation of Target Torque ... 68
K Nut Factor Calculation of Target Torque .. 69
L ASME B16.5 Flange Bolting Information ... 70
M Washer Usage Guidance and Purchase Specification for Through-Hardened
 Washers ... 71
N Definitions, Commentary, and Guidelines on the Reuse of Bolts 76
O Assembly Bolt Stress Determination .. 78
P Guidance on Troubleshooting Flanged Joint Leakage Incidents 90
FOREWORD

ASME formed an Ad Hoc Task Group on Post Construction in 1993 in response to an increased need for recognized and generally accepted engineering standards for the inspection and maintenance of pressure equipment after it has been placed in service. At the recommendation of this Task Group, the Board on Pressure Technology Codes and Standards (BPTCS) formed the Post Construction Committee (PCC) in 1995. The scope of this committee was to develop and maintain standards addressing common issues and technologies related to post-construction activities and to work with other consensus committees in the development of separate, product-specific codes and standards addressing issues encountered after initial construction for equipment and piping covered by Pressure Technology Codes and Standards. The BPTCS covers non-nuclear boilers, pressure vessels (including heat exchangers), piping and piping components, pipelines, and storage tanks.

The PCC selects standards to be developed based on identified needs and the availability of volunteers. The PCC formed the Subcommittee on Inspection Planning and the Subcommittee on Flaw Evaluation in 1995. In 1998, a Task Group under the PCC began preparation of Guidelines for Pressure Boundary Bolted Flange Joint Assembly and in 1999 the Subcommittee on Repair and Testing was formed. Other topics are under consideration and may possibly be developed into future guideline documents.

The subcommittees were charged with preparing standards dealing with several aspects of the in-service inspection and maintenance of pressure equipment and piping. Guidelines for Pressure Boundary Bolted Flange Joint Assembly (PCC-1) provides guidance and is applicable to both new and in-service bolted flange joint assemblies. The Inspection Planning Using Risk-Based Methods Standard (PCC-3) provides guidance on the preparation of a risk-based inspection plan. Imperfections found at any stage of assembly, installation, inspection, operation, or maintenance are then evaluated, when appropriate, using the procedures provided in the Fitness-For-Service Standard (API 579-1/ASME FFS-1). If it is determined that repairs are required, guidance on repair procedures is provided in the appropriate portion of the Repair of Pressure Equipment and Piping Standard (PCC-2). To provide all stakeholders involved in pressure equipment with a guide to identify publications related to pressure equipment integrity, a Guide to Life Cycle Management of Pressure Equipment Integrity has been prepared (PTB-2).

None of these documents are Codes. They provide recognized and generally accepted good practices that may be used in conjunction with Post-Construction Codes, such as API 510, API 570, and NB-23, and with jurisdictional requirements.

The first edition of ASME PCC-1, Guidelines for Pressure Boundary Bolted Flange Joint Assembly, was approved for publication in 2000. The 2010 revision was approved by ANSI as an American National Standard on January 14, 2010. This 2013 revision includes many updates and a major new Appendix A titled “Training and Qualification of Bolted Joint Assembly Personnel” and was approved by ANSI as an American National Standard on August 12, 2013.
ASME PRESSURE TECHNOLOGY
POST CONSTRUCTION COMMITTEE

(The following is the roster of the Committee at the time of approval of this Standard.)

STANDARDS COMMITTEE OFFICERS
C. R. Leonard, Chair
D. Peters, Vice Chair
S. J. Rossi, Secretary

STANDARDS COMMITTEE PERSONNEL
J. E. Batey, The Dow Chemical Co.
C. Becht IV, Becht Engineering Co., Inc.
D. L. Berger, PPL Generation LLC
W. Brown, Integrity Engineering Solutions
P. N. Chaku, Lummus Technology, Inc.
E. W. Hayman, Consultant
W. J. Koves, Pi Engineering Software, Inc.
D. A. Lang, FM Global
D. E. Lay, Hytorc
C. R. Leonard, Life Cycle Engineering
K. Mokhtarian, Consultant
C. C. Neely, Becht Engineering Co., Inc.
T. M. Parks, The National Board of Boiler and Pressure Vessel Inspectors
J. R. Payne, JPAC, Inc.
D. Peters, Structural Integrity Associates
J. T. Reynolds, Intertek Moody
S. C. Roberts, Shell Global Solutions (U.S.), Inc.
C. D. Rodery, BP North American Products, Inc.
S. J. Rossi, The American Society of Mechanical Engineers
C. W. Rowley, The Wesley Corp.
J. Taagepera, Chevron Energy Technology Co.
K. Oyamada, Delegate
T. Tahara, Delegate
C. D. Cowfer, Contributing Member, Cowfer Consulting
E. Michalopoulos, Contributing Member, Ministry of Economics of Greece
J. R. Sims, Jr., Contributing Member, Becht Engineering Co., Inc.

POST CONSTRUCTION SUBCOMMITTEE ON FLANGE JOINT ASSEMBLY (PCC)
C. C. Neely, Chair, Becht Engineering Co., Inc.
B. J. Barron, Newport News Shipbuilding
W. Brown, Integrity Engineering Solutions
E. W. Hayman, Consultant
D. E. Lay, Hytorc
G. Milne, Flexitallic, Ltd.
J. R. Payne, JPAC, Inc.
C. D. Rodery, BP North American Products, Inc.
J. Waterland, VSP Technologies
GUIDELINES FOR PRESSURE BOUNDARY
BOLTED FLANGE JOINT ASSEMBLY

1 SCOPE

The bolted flange joint assembly (BFJA) guidelines described in this document apply principally to pressure-boundary flanged joints with ring-type gaskets that are entirely within the circle enclosed by the bolt holes and with no contact outside this circle. These guidelines may be selectively applied to other joint geometries. By selection of those features suitable to the specific service or need, these guidelines may be used to develop effective joint assembly procedures for the broad range of sizes and service conditions normally encountered in industry.

Users are cautioned that the guidelines contained in ASME PCC-1 have been developed generically and are recommended for general applications. They may not necessarily be suitable for all applications. Precautionary considerations are provided in some cases but should not be considered as all inclusive. Sound engineering practices and judgment should be used to determine the applicability of a specific method or part of a method to a specific application. Each joint assembly procedure should be subject to an appropriate review by qualified personnel. While this Guideline covers joint assembly within the scope of ASME Pressure Technology Codes and Standards, it may be used on equipment constructed in accordance with other codes and standards.

Guidance on troubleshooting BFJAs not providing leak-tight performance is also provided in this document (see Appendix P).

2 INTRODUCTION

A BFJA is a complex mechanical device; therefore, BFJAs that provide leak-free service are the result of many selections/activities having been made/performed within a relatively narrow band of acceptable limits. One of the activities essential to leak-free performance is the joint assembly process. The guidelines outlined in this document cover the assembly elements essential for a high level of leak-tightness integrity of otherwise properly designed/constructed BFJAs. It is recommended that written procedures, incorporating the features of these guidelines that are deemed suitable to the specific application under consideration, be developed for use by the joint assemblers. Alternative features and methods for specific applications may be used subject to endorsement by the user.

NOTE: Within the context of this Guideline, the term “user” includes the user and their authorized agent, as recorded in either the contract documents or in the written assembly procedures (see para. 14.1).

3 TRAINING AND QUALIFICATION OF BOLTED
JOINT ASSEMBLY PERSONNEL

It is recommended that the user provide, or arrange to have provided, as appropriate, essential training and qualification in accordance with Appendix A of the bolted joint assembly personnel who will be expected to follow procedures developed from this Guideline.

See section F-2 of Appendix F for comments on accepting flange joint assembly procedures not currently listed in these guidelines.

The qualification of assemblers in accordance with Appendix A may be considered portable subject to the guidance in para. A-5.3.5.

4 CLEANING AND EXAMINATION OF FLANGE AND
FASTENER CONTACT SURFACES

Before assembly is started, clean and examine flange and fastener contact surfaces as described in this section. With one exception, remove all indications of the previous gasket installation from the gasket contact surfaces; use approved solvents and/or soft-wire brushes, if required, for cleaning to prevent surface contamination and damage to existing surface finish. Avoid using carbon steel brushes on stainless steel flanges.

The exception based on experience is residual flexible graphite that may remain in the surface finish grooves when either a flexible graphite clad or a spiral-wound gasket with flexible graphite filler is to be used as the replacement gasket.

(a) Examine the gasket contact surfaces of both mating joint flanges for compliance with recommended surface finish (see Appendix C) and for damage to surface finish such as scratches, nicks, gouges, and burrs. Indications running radially across the facing are of particular