Protocol for Verification and Validation of High-pressure High-temperature Equipment

API TECHNICAL REPORT 1PER15K-1
FIRST EDITION, MARCH 2013
Special Notes

API publications necessarily address problems of a general nature. With respect to particular circumstances, local, state, and federal laws and regulations should be reviewed.

Neither API nor any of API's employees, subcontractors, consultants, committees, or other assignees make any warranty or representation, either express or implied, with respect to the accuracy, completeness, or usefulness of the information contained herein, or assume any liability or responsibility for any use, or the results of such use, of any information or process disclosed in this publication. Neither API nor any of API's employees, subcontractors, consultants, or other assignees represent that use of this publication would not infringe upon privately owned rights.

API publications may be used by anyone desiring to do so. Every effort has been made by the Institute to assure the accuracy and reliability of the data contained in them; however, the Institute makes no representation, warranty, or guarantee in connection with this publication and hereby expressly disclaims any liability or responsibility for loss or damage resulting from its use or for the violation of any authorities having jurisdiction with which this publication may conflict.

API publications are published to facilitate the broad availability of proven, sound engineering and operating practices. These publications are not intended to obviate the need for applying sound engineering judgment regarding when and where these publications should be utilized. The formulation and publication of API publications is not intended in any way to inhibit anyone from using any other practices.

Any manufacturer marking equipment or materials in conformance with the marking requirements of an API standard is solely responsible for complying with all the applicable requirements of that standard. API does not represent, warrant, or guarantee that such products do in fact conform to the applicable API standard.

Users of this Technical Report should not rely exclusively on the information contained in this document. Sound business, scientific, engineering, and safety judgment should be used in employing the information contained herein.
Foreword

Nothing contained in any API publication is to be construed as granting any right, by implication or otherwise, for the manufacture, sale, or use of any method, apparatus, or product covered by letters patent. Neither should anything contained in the publication be construed as insuring anyone against liability for infringement of letters patent.

This document was produced under API standardization procedures that ensure appropriate notification and participation in the developmental process and is designated as an API standard. Questions concerning the interpretation of the content of this publication or comments and questions concerning the procedures under which this publication was developed should be directed in writing to the Director of Standards, American Petroleum Institute, 1220 L Street, NW, Washington, DC 20005. Requests for permission to reproduce or translate all or any part of the material published herein should also be addressed to the director.

Generally, API standards are reviewed and revised, reaffirmed, or withdrawn at least every five years. A one-time extension of up to two years may be added to this review cycle. Status of the publication can be ascertained from the API Standards Department, telephone (202) 682-8000. A catalog of API publications and materials is published annually by API, 1220 L Street, NW, Washington, DC 20005.

Standards referenced herein may be replaced by other international or national standards that can be shown to meet or exceed the requirements of the referenced standard.

Suggested revisions are invited and should be submitted to the Standards Department, API, 1220 L Street, NW, Washington, DC 20005, standards@api.org.
Contents

1. **Scope** .. 1
 1.1 Purpose .. 1
 1.2 Existing Designs and In-service Equipment .. 2
 1.3 Applicability .. 2

2. **Terms and Definitions** ... 2

3. **Abbreviations and Symbols** ... 6
 3.1 Abbreviations .. 6
 3.2 Symbols .. 7

4. **Functional Specification** .. 7
 4.1 Responsibility .. 7
 4.2 Environmental Conditions ... 8
 4.3 Specified Loads and Characteristics .. 8
 4.4 Life Cycle Loading .. 13
 4.5 Applicable Industry Standards and/or Regulatory Requirements 13

5. **Technical Specifications** .. 16
 5.1 General .. 16
 5.2 Responsibilities ... 16
 5.3 Personnel Requirements .. 16
 5.4 Documentation ... 16
 5.5 Response to Functional Specifications .. 17
 5.6 Fit-for-service Basis ... 19
 5.7 Aftermarket Activities .. 19

6. **Best Practices and Guidance** .. 20
 6.1 Materials ... 20
 6.2 Design Verification 39
 6.3 Design Validation Testing .. 45
 6.4 Manufacturing Process Specification (MPS) ... 51
 6.5 Aftermarket Activities .. 53

Annex A (informative) **Material Properties** ... 54

Annex B (informative) **Metallurgical-related Failures** ... 67

Annex C (informative) **Failure Modes and Effects Analysis (FMEA)** 70

Annex D (informative) **Technical Considerations on the Selection of Castings and Forgings** ... 81

Annex E (informative) **Quality Management System Guidelines** 82

Bibliography ... 84

Figures

1. System Analysis Specification Breaks (Completion) .. 11
2. System Analysis Specification Breaks (Drilling) ... 12
3. Performance Envelope Example ... 14
4. Combined Loading Capacity Chart from API 6AF1 .. 14
5. Example of True Stress for 2 1/4Cr-1Mo True Strain Curve............................... 33
6. Validation Process ... 48
A.1 Example of Effect of Temperature on Thermophysical Properties of 4130 and 4340 (MMPDS) .. 55
Protocol for Verification and Validation of High-pressure High-temperature Equipment

1 Scope

1.1 Purpose

This report focuses on an evaluation process for high-pressure high-temperature (HPHT) equipment in the petroleum and natural gas industries which includes design verification analysis, design validation, material selection considerations, and manufacturing process controls necessary to ensure the equipment is fit-for-service in the applicable HPHT environment. HPHT environments are intended to mean that one or more of the following well conditions exist:

a) the completion of the well requires completion equipment or well control equipment assigned a temperature rating greater than 350 °F or a pressure rating greater than 15,000 psig;

b) the maximum anticipated surface pressure or shut-in tubing pressure is greater than 15,000 psig on the seafloor for a well with a subsea wellhead or at the surface for a well with a surface wellhead; or

c) the flowing temperature is greater than 350 °F on the seafloor for a well with a subsea wellhead or on the surface for a well with a surface wellhead.

NOTE In high-temperature, low-pressure applications, not all methodologies presented in this document may apply.

The design verification process focuses on the analytical methods to achieve design verification by calculating the performance limits of a design (system, subsystems, and components), including its service life and material selection. The design validation process focuses on evaluating the potential failure modes of the equipment, the effects/consequences of the failures and defining the appropriate test methods to evaluate the reliability of the equipment against the identified failure modes including validation of material performance. The material section defines the required input parameters for the verification process and recommends the procedures necessary to evaluate the material fitness-for-service in the service environment. Functional testing procedures specific to HPHT equipment are also included in this document.

The design verification and validation protocols in this report should be used as a guide by the various API subcommittees to develop new and revised standards on equipment specifications for HPHT service. This report is not intended to replace existing API equipment specifications but to supplement them by illustrating accepted practices and principles that may be considered in order to maintain the safety and integrity of the equipment. This report is intended to apply to the following equipment: wellheads, tubing heads, tubulars, packers, connections, seals, seal assemblies, production trees, chokes, and well control equipment. It may be used for other equipment in HPHT service.

Annexes to this report provide additional information on the following:

— Annex A provides example HPHT material property data,

— Annex B is a compendium of published metallurgical-related field failures,

— Annex C provides a detailed explanation of the failure mode and effect analysis (FMEA) process,

— Annex D contains technical information on the considerations for the selection of castings and forgings,