BS EN 40-3-3:2013

BSI Standards Publication

Lighting columns
Part 3-3: Design and verification
— Verification by calculation
National foreword

This British Standard is the UK implementation of EN 40-3-3:2013. It supersedes BS EN 40-3-3:2003, which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee B/509/50, Street lighting columns.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2013.
Published by BSI Standards Limited 2013.

ISBN 978 0 580 78516 0

ICS 93.080.40

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 28 February 2013.

Amendments issued since publication

Date Text affected
Lighting columns - Part 3-3: Design and verification - Verification by calculation
Contents

Foreword ... 3

1 Scope ... 4

2 Normative references .. 4

3 Terms and definitions .. 4

4 Symbols ... 5

5 Structural strength requirements (ultimate limit state) .. 6

 5.1 Application of calculations ... 6

 5.2 Characteristic loads ... 6

 5.3 Characteristic strength of materials .. 7

 5.3.1 Metal lighting columns ... 7

 5.3.2 Concrete lighting columns ... 7

 5.3.3 Fibre reinforced polymer composite lighting columns 7

 5.4 Design loads ... 7

 5.5 Calculation of moments ... 7

 5.5.1 Bending moments ... 7

 5.5.2 Torsional moments ... 8

 5.6 Strength of cross-section ... 8

 5.6.1 General ... 8

 5.6.2 Metal columns .. 8

 5.7 Acceptance of design for strength .. 15

 5.8 Concrete lighting columns .. 16

 5.9 Fibre reinforced polymer composite lighting columns 16

6 Deflection requirements (serviceability limit state) ... 16

 6.1 Application of calculations ... 16

 6.2 Serviceability limit state design loads ... 16

 6.3 Design values of material coefficients .. 16

 6.4 Calculation of deflections .. 17

 6.4.1 Horizontal deflection of the luminaire connection(s) 17

 6.4.2 Vertical deflection of the luminaire connection(s) ... 17

 6.5 Acceptance of design for deflection ... 17

 6.5.1 Horizontal deflection ... 17

 6.5.2 Vertical deflection ... 18

7 Permissible modifications to verified column .. 18

8 Fatigue requirements .. 18

Bibliography ... 28
Foreword

This document (EN 40-3-3:2013) has been prepared by Technical Committee CEN/TC 50 “Lighting columns and spigots”, the secretariat of which is held by AFNOR.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by August 2013, and conflicting national standards shall be withdrawn at the latest by August 2013.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN 40-3-3:2003.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association.

There are seven parts to the series of standards EN 40 - Lighting columns, as follows:

— Part 1: Definitions and terms;
— Part 2: General requirements and dimensions;
— Part 3: Design and verification:
 — Part 3-1: Specification for characteristic loads;
 — Part 3-2: Verification by testing;
 — Part 3-3: Verification by calculation;
— Part 4: Requirements for reinforced and prestressed concrete lighting columns,
— Part 5: Requirements for steel lighting columns;
— Part 6: Requirements for aluminium lighting columns;
— Part 7: Requirements for fibre reinforced polymer composite lighting columns.

According to the CEN/CENELEC Internal Regulations, the national standards organisations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.
1 Scope

This European Standard specifies the requirements for the verification of the design of lighting columns by calculation. It applies to lighting columns of nominal height (including any bracket) not exceeding 20 m. Special structural designs to permit the attachment of signs, overhead wires, etc. are not covered by this European Standard.

The requirements for lighting columns made from materials other than concrete, steel, aluminium or fibre reinforced polymer composite (for example wood, plastic and cast iron) are not specifically covered in this standard. Fibre reinforced polymer composite lighting columns are covered in this standard in conjunction with EN 40-7.

This European Standard includes performance requirements for horizontal loads due to wind. Passive safety and the behaviour of a lighting column under the impact of a vehicle are not addressed. Such lighting columns will have additional requirements (see EN 12767).

The calculations used in this European Standard are based on limit state principles, where the effects of factored loads are compared with the relevant resistance of the structure. Two limit states are considered:

a) the ultimate limit state, which corresponds to the load-carrying capacity of the lighting column;

b) the serviceability limit state, which relates to the deflection of the lighting column in service.

NOTE In following this approach, simplifications appropriate to lighting columns have been adopted. These are:

1) the calculations are applicable to circular and regular octagonal cross-sections;

2) the number of separate partial safety factors have been reduced to a minimum;

3) serviceability partial safety factors have a value equal to unity.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 40-3-1, Lighting columns — Part 3-1: Design and verification — Specification for characteristic loads

EN 40-4, Lighting columns — Part 4: Requirements for reinforced and prestressed concrete lighting columns

EN 40-7:2002, Lighting columns — Part 7: Requirements for fibre reinforced polymer composite lighting columns

3 Terms and definitions

For the purposes of this document, the terms and definitions given in EN 40-1:1991 apply.