Ozone Sanitization of Pharmaceutical Water Systems
Disclaimer:
This Guide aims to describe practices associated with ozone sanitization of high purity GMP pharmaceutical water storage and distribution systems. ISPE cannot ensure and does not warrant that a system managed in accordance with this Guide will be acceptable to regulatory authorities. Further, this Guide does not replace the need for hiring professional engineers or technicians.

Limitation of Liability
In no event shall ISPE or any of its affiliates, or the officers, directors, employees, members, or agents of each of them, or the authors, be liable for any damages of any kind, including without limitation any special, incidental, indirect, or consequential damages, whether or not advised of the possibility of such damages, and on any theory of liability whatsoever, arising out of or in connection with the use of this information.

© Copyright ISPE 2012. All rights reserved.

No part of this document may be reproduced or copied in any form or by any means – graphic, electronic, or mechanical, including photocopying, taping, or information storage and retrieval systems – without written permission of ISPE.

All trademarks used are acknowledged.

Preface

The purpose of this document is to provide guidance when considering, designing, and operating an ozone system for the purpose of sanitizing a high purity GMP pharmaceutical water system. While the use of ozone as a sanitant in GMP high purity water storage and distribution systems is widely accepted, there is little design and operating guidance for such systems. It is the intent of this Good Practice Guide to provide such guidance.

This Guide includes a comprehensive assortment of design and operating considerations that system designers and owners should be aware of.

This is not a requirements or specification document. Based on user requirements and risk assessments design, teams will have to establish their own system requirements and specifications.

The reason for considering the use of ozone is that there may be a wide range of possible cost and operating advantages. The significance of these advantages may vary depending upon the site and project; however, as with all methods of sanitization, the use of ozone technology will place specific requirements on the system design and operation and also may impact the chemical attributes of the water. Some of these requirements and impacts might be considered disadvantages.

This Guide discusses these ozone-specific requirements, advantages, and disadvantages. It also steps the reader through system design, operation, and control. As with any system design, it is the responsibility of the design team and owner to evaluate these possible advantages and disadvantages, taking into consideration the design guidance outlined in this document and determine which method of sanitization, ozone or other, is best for their particular application.
Acknowledgements

Core Team Contributors

Tony Harrison Pharmagaph United Kingdom
Joe Manfredi GMP Systems, Inc. USA
Teri C. (T.C.) Soli, PhD Soli Pharma Solutions, Inc. USA
Philip E. Sumner, P.E. (Team Leader) Pfizer Inc. USA

Contributors

Stefan Aebi Novartis Pharma AG Switzerland
Ben Battat IN USA, Inc. USA
Anthony Bevilacqua, PhD Mettler Toledo Thornton, Inc. USA
Will Brown MECO USA
Vince Ciufia OSTI Inc. USA
Nissan Cohen Rohrback Cosaco Systems, Inc. USA
Ken Gethard, PhD Schering Plough Global USA
Ismail Gobulukoglu, PhD Aquafine Corporation USA
Michelle M. Gonzalez, P.E. BioPharm Engineering Consultant USA
David M. Gray Mettler-Toledo Thornton, Inc. USA
Richard Kettlewell GlaxoSmithKline United Kingdom
Bill LaVoice Aquafine Corporation USA
Neil McCarthy Pfizer Inc. Ireland
Robert Neri Sanofi France
Reune Runyon Apaco AG/Innovatec Switzerland
Barbara Schilling Ozonia North America USA
Cameron Sipe Pfizer Inc. USA
Hans Sundstrom MKS Instruments USA
Robert Vecchione Christ Aqua Pharma & Biotech NA USA
Peter Vishton, P.E. Technology Engineer Consultant USA
Gary Zoccolante Siemens Water Technologies Corp. USA

Cover photos: courtesy of GMP Systems, Inc., www.gmpsystems.com
Table of Contents

1 Introduction .. 9
 1.1 Purpose.. 9
 1.2 Scope.. 9
 1.3 Structure of This Guidance .. 9
 1.4 Background .. 10

2 Use of Ozone in the Pharmaceutical Industry ... 13
 2.1 Introduction .. 13
 2.2 Overview of Ozone Use Advantages and Disadvantages ... 13

3 Regulatory and Industry Guidance ... 17
 3.1 Introduction .. 17
 3.2 USP General Information Chapter <1231> ... 17
 3.3 FDA and Other Regulatory Agencies ... 18
 3.4 EP, JP, and EMA ... 18
 3.5 ISPE ... 18

4 Ozone Characteristics .. 19
 4.1 Introduction .. 19
 4.2 What is Ozone? .. 19
 4.3 Ozone and Free Radicals .. 20
 4.4 Degradants Associated with Ozone Generation and Destruction 21

5 Effectiveness of Ozone for Microbial Control ... 25
 5.1 Introduction .. 25
 5.2 Ozone Use in Pharmaceutical Water Systems .. 25
 5.3 Mechanisms and Targets of Ozone Attack ... 25
 5.4 Factors Affecting Ozone Efficacy .. 26
 5.5 Ozone Sanitization Strategies .. 26
 5.6 Determining Ozone Sanitization Frequency ... 28
 5.7 Summary Elements of Optimal Microbiological Control Using Ozone 28

6 Ozone Generation .. 31
 6.1 Introduction .. 31
 6.2 Corona Discharge Ozone Generation ... 31
 6.3 Electrolytic Ozone Generation .. 36
 6.4 Sizing an Ozone Generator ... 38

7 Ultraviolet Light for Ozone Destruction ... 43
 7.1 Introduction .. 43
 7.2 Electromagnetic Spectrum ... 43
 7.3 Mercury Arc Lamps ... 44
 7.4 Conventional Low Pressure Lamps .. 45
 7.5 Amalgam Lamps ... 45
 7.6 Medium Pressure Mercury Arc Lamps .. 46
 7.7 Ozone Absorbance of UV Light .. 47
 7.8 UV Dose .. 48
 7.9 UV Destruct Unit Sizing .. 49
 7.10 UV Intensity Monitors ... 49
1 Introduction

The reason for considering the use of ozone as the primary sanitizing agent for a pharmaceutical water distribution system is that there may be a wide range of possible operating and cost advantages. The significance of these advantages may vary depending upon the site and project. However, as with all methods of sanitization, the use of ozone technology will place specific requirements on the system design and operation.

This Guide discusses these ozone-specific requirements, including associated advantages and disadvantages. It also steps the reader through system design, operation, and control. As with any system design, it is the responsibility of the owner and the design team to evaluate ozone’s applicability taking into consideration the design guidance outlined in this Guide.

Ozone has been used extensively by many firms, while others have little or no experience with ozone as a sanitant. The reasons may include a lack of knowledge regarding system design and operation, concerns about compatible materials of construction, and safety and environmental issues. It has been reported that misunderstanding of the “added substance” issues with compendial waters also has been a potential deterrent. For this reason, there is also discussion of this issue in this Guide.

1.1 Purpose

The purpose of this Guide is to provide detailed guidance relating to design and operation of pharmaceutical water systems using ozone for sanitization as well as describing the principles that allow this sanitization approach to be effective.

1.2 Scope

The scope of this Guide includes designs and practices associated with ozone sanitization of high purity GMP pharmaceutical water storage and distribution systems. Other ozone applications are not considered (e.g., drinking water, cooling towers).

1.3 Structure of This Guidance

This ISPE Good Practice Guide: Ozone Sanitization of Pharmaceutical Water Systems is presented in the following sections:

- Introduction
- Use of ozone in the pharmaceutical industry
- Regulatory and industry guidance documents
- Ozone characteristics
- Effectiveness of ozone for microbial control
- Ozone generation
- Ultraviolet light for ozone destruction
- Ozone sensors
1.4 Background

This ISPE Good Practice Guide: Ozone Sanitization of Pharmaceutical Water Systems describes established design methodologies and practices to allow expanded use of ozone based on knowledge of the principles and benefits.

For more than 100 years, ozone has been used to sanitize municipal drinking water and reduce its organic content, and its use for pharmaceutical water systems extends beyond 30 years, yet its use is still to some extent limited in pharmaceutical applications [1].

Pharmaceutical water is used as a utility and ingredient for Good Manufacturing Practice (GMP) processes, and for the production of drug products and drug substances including Active Pharmaceutical Ingredients (APIs). Depending on the application, the purities of these waters are usually categorized as Purified Water (PW), Highly Purified Water (HPW), or Water for Injection (WFI) for which the world pharmacopoeias have monographs. In addition, water may be produced as a final product, such as USP packaged waters, including:

- Sterile water for injection
- Sterile water for irrigation
- Sterile water for inhalation
- Sterile purified water
- Bacteriostatic water for injection
- Water for hemodialysis (which also may be produced as a bulk water)

The USP monographs for bulk purified water and water for injection also provide for packaged options where microbial control within the package and inertness of the packaging are very important.

Because of the potential importance of the microbial content of water to the manufacturing of products, cleaning and some laboratory activities in pharmaceutical or biopharmaceutical facilities, water systems that produce and distribute these waters generally should be under a continuous state of control to minimize microbial content, biofilm buildup, and endotoxins.
Controlling microbial presence and proliferation within the storage and distribution sections of pharmaceutical water storage and distribution systems is typically accomplished by heat, sanitizing chemical solutions, or ozone. To heat sanitize, the storage and distribution systems are heated either continuously or on a periodic basis as validated. To sanitize using chemical solutions, these solutions are periodically circulated throughout the system followed by rinsing. This Guide focuses on the use of ozone as a sanitant.