Design and construction of building structures with fibre-reinforced polymers
Legal Notice for Standards

Canadian Standards Association (CSA) standards are developed through a consensus standards development process approved by the Standards Council of Canada. This process brings together volunteers representing varied viewpoints and interests to achieve consensus and develop a standard. Although CSA administers the process and establishes rules to promote fairness in achieving consensus, it does not independently test, evaluate, or verify the content of standards.

Disclaimer and exclusion of liability
This document is provided without any representations, warranties, or conditions of any kind, express or implied, including, without limitation, implied warranties or conditions concerning this document’s fitness for a particular purpose or use, its merchantability, or its non-infringement of any third party’s intellectual property rights. CSA does not warrant the accuracy, completeness, or currency of any of the information published in this document. CSA makes no representations or warranties regarding this document’s compliance with any applicable statute, rule, or regulation.

In no event shall CSA, its volunteers, members, subsidiaries, or affiliated companies, or their employees, directors, or officers, be liable for any direct, indirect, or incidental damages, injury, loss, costs, or expenses, howsoever caused, including but not limited to special or consequential damages, lost revenue, business interruption, lost or damaged data, or any other commercial or economic loss, whether based in contract, tort (including negligence), or any other theory of liability, arising out of or resulting from access to or possession or use of this document, even if CSA has been advised of the possibility of such damages, injury, loss, costs, or expenses.

In publishing and making this document available, CSA is not undertaking to render professional or other services for or on behalf of any person or entity or to perform any duty owed by any person or entity to another person or entity. The information in this document is directed to those who have the appropriate degree of experience to use and apply its contents, and CSA accepts no responsibility whatsoever arising in any way from any and all use of or reliance on the information contained in this document.

CSA is a private not-for-profit company that publishes voluntary standards and related documents. CSA has no power, nor does it undertake, to enforce compliance with the contents of the standards or other documents it publishes.

Intellectual property rights and ownership
As between CSA and the users of this document (whether it be in printed or electronic form), CSA is the owner, or the authorized licensee, of all works contained herein that are protected by copyright, all trade-marks (except as otherwise noted to the contrary), and all inventions and trade secrets that may be contained in this document, whether or not such inventions and trade secrets are protected by patents and applications for patents. Without limitation, the unauthorized use, modification, copying, or disclosure of this document may violate laws that protect CSA’s and/or others’ intellectual property and may give rise to a right in CSA and/or others to seek legal redress for such use, modification, copying, or disclosure. To the extent permitted by licence or by law, CSA reserves all intellectual property rights in this document.

Patent rights
Attention is drawn to the possibility that some of the elements of this standard may be the subject of patent rights. CSA shall not be held responsible for identifying any or all such patent rights. Users of this standard are expressly advised that determination of the validity of any such patent rights is entirely their own responsibility.

Authorized use of this document
This document is being provided by CSA for informational and non-commercial use only. The user of this document is authorized to do only the following:

If this document is in electronic form:
• load this document onto a computer for the sole purpose of reviewing it;
• search and browse this document; and
• print this document if it is in PDF format.

Limited copies of this document in print or paper form may be distributed only to persons who are authorized by CSA to have such copies, and only if this Legal Notice appears on each such copy.

In addition, users may not and may not permit others to
• alter this document in any way or remove this Legal Notice from the attached standard;
• sell this document without authorization from CSA; or
• make an electronic copy of this document.

If you do not agree with any of the terms and conditions contained in this Legal Notice, you may not load or use this document or make any copies of the contents hereof, and if you do make such copies, you are required to destroy them immediately. Use of this document constitutes your acceptance of the terms and conditions of this Legal Notice.
CSA Standards Update Service

S806-12
March 2012

Title: Design and construction of building structures with fibre-reinforced polymers
Pagination: 198 pages (xi preliminary and 187 text), each dated March 2012

To register for e-mail notification about any updates to this publication

- go on-line to shop.csa.ca
- click on E-mail Services under MY ACCOUNT
- click on CSA Standards Update Service

The **List ID** that you will need to register for updates to this publication is **2421834**.

If you require assistance, please e-mail techsupport@csa.ca or call 416-747-2233.

Visit CSA’s policy on privacy at csagroup.org/legal to find out how we protect your personal information.
CSA Standard

S806-12

Design and construction of building structures with fibre-reinforced polymers

Published in March 2012 by Canadian Standards Association
A not-for-profit private sector organization
5060 Spectrum Way, Suite 100, Mississauga, Ontario, Canada L4W 5N6
1-800-463-6727 • 416-747-4044

Visit our Online Store at shop.csa.ca
Contents

Technical Committee on Design and Construction of Building Structures with Fibre-Reinforced Polymers ix

Preface xi

1 Scope 1
 1.1 General 1
 1.2 FRP components 1
 1.3 FRP reinforced components 1
 1.4 Exposure to fire and temperature effects 1
 1.5 Terminology 1

2 Reference publications 2

3 Definitions, abbreviations, subscripts and symbols, and units of measurement 8
 3.1 Definitions 8
 3.2 Abbreviations 11
 3.3 Subscripts and symbols 11
 3.4 Units of measurement 11

4 Drawings and related documents 12

5 General design requirements 12
 5.1 Structural design 12
 5.1.1 General 12
 5.1.2 Alternative design procedures 12
 5.1.3 Criteria for component testing 12
 5.2 Structural integrity 13
 5.3 Fire performance 13
 5.3.1 General 13
 5.3.2 Fire resistance 13
 5.3.3 Flame spread and smoke development 13
 5.3.4 Noncombustibility 13
 5.4 Durability 14

6 Limit states, loading, load combinations, and factored resistance 14
 6.1 Symbols 14
 6.2 Limit states 14
 6.2.1 Durability 14
 6.2.2 Fire resistance 14
 6.2.3 Ultimate limit state 14
 6.2.4 Serviceability limit states 14
 6.3 Loading 15
 6.3.1 Loads 15
 6.3.2 Loads not listed 15
 6.3.3 Imposed deformations 15
 6.4 Load combinations and load factors 15
 6.4.1 Load combinations and factor for ultimate limit state 15
 6.4.2 Load combination for serviceability limit states 15
 6.5 Factored resistance 15
 6.5.1 General 15
 6.5.2 Factored resistance of FRP components and reinforcing materials 15
6.5.3 Factored resistance of concrete 16
6.5.4 Steel reinforcement and tendons 16
6.5.5 Factored resistance of other structural materials 16

7 Properties of FRP components and reinforcing materials 16
7.1 FRP bars, tendons, and grids 16
7.1.1 General 16
7.1.2 Materials and composition 16
7.1.3 Non-prestressed FRP reinforcement 17
7.1.4 FRP prestressing tendons 17
7.1.5 Testing and acceptance 17
7.1.6 Characteristic values for design 18
7.2 Surface-bonded and near-surface-mounted FRP reinforcing materials 18
7.2.1 General 18
7.2.2 Materials and composition 18
7.2.3 General properties of surface-bonded and near-surface-mounted FRP composites 19
7.2.4 Testing for materials of the FRP reinforcing systems 19
7.2.5 Physical and mechanical properties of FRP composites 19
7.2.6 Characteristic values for design 19
7.2.7 Resistance factor 19
7.2.8 Other performance tests 19
7.3 Fibre-reinforced concrete cladding 19
7.3.1 General 19
7.3.2 Materials and composition of FRC cladding 19
7.3.3 Determination of physical and mechanical properties 20
7.3.4 FRC as an exterior layer added to the surface of a panel 20
7.4 FRP cladding 21
7.4.1 General 21
7.4.2 Material composition of FRP 21
7.4.3 Determination of physical and mechanical properties 21

8 Design of concrete components with FRP reinforcement 22
8.1 Symbols 22
8.2 Design requirements 24
8.2.1 General 24
8.2.2 Failure initiated by FRP rupture 24
8.2.3 Minimum cover 24
8.2.4 Buildings other than parking structures 24
8.2.5 Parking structures 24
8.3 Beams and one-way slabs 25
8.3.1 Distribution of flexural reinforcement 25
8.3.2 Deflection under service loads 25
8.3.3 Vibrations 26
8.4 Ultimate limit states 26
8.4.1 Flexural strength 26
8.4.2 Minimum reinforcement 27
8.4.3 Members under flexure and axial load 28
8.4.4 Design for shear and torsion in flexural regions 30
8.4.5 Minimum shear reinforcement 32
8.4.6 Maximum spacing of transverse reinforcement 33
8.4.7 Proportioning of longitudinal reinforcement 33
8.4.8 Sections subjected to combined shear and torsion 34
8.5 Strut-and-tie model 35
8.5.1 Structural idealization 35
8.5.2 Proportioning of strut 35
8.5.3 Proportioning of ties 36
8.5.4 Proportioning of node regions 36
8.5.5 Crack control reinforcement 36
8.6 Special provisions for brackets and corbels 36
8.7 Punching shear 37
8.7.1 General 37
8.7.2 Punching shear resistance 37
8.7.3 Maximum value of f'_c 37
8.7.4 Size effect on punching shear resistance 37

9 Development and splices of reinforcement 38
9.1 Symbols 38
9.2 Development of reinforcement — General 38
9.3 Development length of bars in tension 38
9.3.1 General 38
9.3.2 Development length 38
9.3.3 Modification factors 39
9.3.4 Development length of bundled bars 39
9.4 Development of grid reinforcement 39
9.5 Development length of bent bar 40
9.6 Development of flexural reinforcement — General 40
9.7 Development of positive moment reinforcement 40
9.8 Development of negative moment reinforcement 41
9.9 Anchorage of shear reinforcement 41
9.10 Splices of reinforcement — General 41
9.11 Mechanical anchorage 42

10 Design of concrete components prestressed with FRP 42
10.1 Symbols 42
10.2 General 44
10.3 Design assumptions for flexure and axial load 44
10.3.1 Basic assumptions 44
10.3.2 Concrete cover 44
10.4 Permissible stresses in concrete 45
10.4.1 Stresses immediately after prestress transfer 45
10.4.2 Stresses after allowance for all prestress losses 45
10.5 Permissible stresses in tendons 45
10.5.1 Permissible stresses at jacking and transfer 45
10.5.2 Anchorage for FRP tendons 45
10.5.3 Reinforcement of disturbed regions 45
10.6 Losses of prestress 45
10.6.1 Effective prestressing force 45
10.6.2 Prestress losses 46
10.7 Flexural resistance 47
10.7.1 Strain compatibility analysis 47
10.7.2 Bond reduction coefficient 47
10.7.3 Inclusion of reinforcement in flexural resistance 47
10.8 Minimum factored flexural resistance 47
10.9 Minimum area of bonded non-prestressed reinforcement 48
10.10 Shear reinforcement 48
10.11 Web crushing 48
10.12 Minimum length of bonded reinforcement 48
11 Strengthening of concrete masonry and steel components with FRP

11.1 Symbols
11.2 General design requirements
11.2.1 General
11.2.3 Required information
11.2.4 Structural design
11.3 Design requirements for concrete beam strengthening
11.3.1 Flexural strength
11.3.2 Shear strength
11.4 Design requirements for concrete column strengthening
11.4.1 Flexural strength enhancement
11.4.2 Axial load capacity enhancement
11.4.3 Shear strength enhancement
11.5 Design requirements of concrete wall strengthening
11.5.1 General
11.5.2 Flexural strength
11.5.3 Shear strength enhancement
11.6 Design requirements for masonry beam strengthening
11.6.1 Flexural strength
11.6.2 Shear strength
11.7 Design requirements for fully-grouted masonry column strengthening
11.7.1 Flexural strength enhancement
11.7.2 Axial load capacity enhancement
11.7.3 Ductility enhancement
11.7.4 Shear strength enhancement
11.8 Design requirements of masonry wall strengthening
11.8.1 Out-of-plane flexural strength
11.8.2 In-plane shear strength enhancement
11.9 Design requirements for steel and composite steel-concrete beam strengthening

12 Provisions for seismic design

12.1 Symbols
12.2 General
12.3 Applicability
12.4 Seismic loads
12.4.1 Seismic loads for repair and retrofit
12.4.2 Seismic loads for new construction
12.5 Design requirements for column retrofit and rehabilitation
12.5.1 General
12.5.2 Retrofit for flexural strength enhancement
12.5.3 Retrofit for enhancement of concrete confinement
12.5.4 Retrofit for lap splice clamping
12.5.5 Retrofit for shear strength enhancement
12.6 Design for shear wall retrofits
12.6.1 General
12.6.2 Retrofitting reinforced concrete shear walls
12.6.3 Retrofitting masonry shear walls
12.7 Seismic design of FRP reinforced concrete in new construction
12.7.1 General
12.7.2 Moment resisting frame members with longitudinal steel and transverse FRP reinforcement subjected to predominant flexure
12.7.3 Moment resisting frame members with longitudinal steel and transverse FRP reinforcement subjected to significant axial load
12.7.4 Moment resisting frame members with longitudinal and transverse FRP reinforcement subjected to predominant flexure
12.7.5 Moment resisting frame members with longitudinal and transverse FRP reinforcement subjected to significant axial load 72

13 Design of FRC/FRP composites cladding 73
13.1 General 73
13.2 Design considerations 73
13.2.1 General 73
13.2.2 Provision for movement 73
13.2.3 Anchorages and connections 73
13.2.4 Joints 73
13.2.5 Handling and transportation 74
13.2.6 Drawings 74
13.2.7 Surface finishes 74

14 Construction 74
14.1 General 74
14.1.1 Prior to construction 74
14.1.2 During construction 74
14.2 Material storage and handling 74
14.2.1 General 74
14.2.2 Manufactured FRP bars, plates, and laminates 75
14.2.3 Dry fibre fabrics and prepreg fabrics 75
14.2.4 Resins and adhesives 75
14.3 Installation and placement 76
14.3.1 General 76
14.3.2 Internal FRP reinforcement (new construction) 76
14.3.3 External FRP reinforcement (strengthening) 76
14.4 Quality control and inspection 77
14.4.1 General 77
14.4.2 Material properties control 77
14.4.3 Field conditions 78

Annexes
A (normative) — Determination of cross-sectional area of FRP reinforcement 87
B (normative) — Anchor for testing FRP specimens under monotonic, sustained, and cyclic tension 90
C (normative) — Test method for tensile properties of FRP reinforcements 94
D (normative) — Test method for FRP bent bars and stirrups 98
E (normative) — Test method for direct tension pull-off test 103
F (normative) — Test method for tension test of flat specimens 106
G (informative) — Test method for bond strength of FRP rods by pullout testing 111
H (informative) — Test method for creep of FRP rods 120
I (informative) — Test method for long-term relaxation of FRP rods 124
J (informative) — Test method for tensile fatigue of FRP rods 128
K (informative) — Test method for coefficient of thermal expansion of FRP rods 132
L (informative) — Test method for shear properties of FRP rods 136
M (informative) — Test method for alkali resistance of FRP rods 139
N (informative) — Test methods for bond strength of FRP sheet bonded to concrete 143
O (informative) — Test method for overlap splice tension test 152
P (informative) — Fibre-reinforced concrete cladding 156
Q (informative) — FRP nonstructural components 165
R (informative) — Procedure for the determination of a fire-resistance rating for concrete slabs reinforced with FRP and concrete members strengthened with FRP 170
S (normative) — Test method for determining the bond-dependent coefficient of FRP rods 181
Tables
1 — Properties of FRP reinforcement to be considered 78
2 — Resistance factors for prestressed reinforcement 79
3 — Test methods for FRP composites 79
4 — Environmental durability test matrix 80
5 — List of ASTM Standards 80
6 — Maximum permissible computed deflections 81
7 — Maximum deflection formulas for typical FRP reinforced concrete beams and one-way slabs 82
8 — Permissible stresses in tendons as a function of f_{p_u} 83
9 — Minimum area of bonded non-prestressed reinforcement 83
10 — Development length and transfer length for certain types of FRP 83

Figures
1a — A typical installation sequence of a surface mounted FRP fabric onto a concrete substrate 84
1b — Near-surface mounted (NSM) external FRP reinforcement 84
2 — Moment-curvature relation of FRP reinforced concrete 85
3 — Influence of anchorage conditions on effective cross-sectional area of strut 86
Technical Committee on Design and Construction of Building Structures with Fibre-Reinforced Polymers

G. Razaqpur McMaster University, Hamilton, Ontario Chair

A. Wiseman Public Works & Government Services Canada, Gatineau, Québec Vice-Chair

B. Benmokrane Université de Sherbrooke, Sherbrooke, Québec

L. Bisby The University of Edinburgh, Edinburgh, Scotland Associate

O. Chaallal Université du Québec / ÉTS, Montréal, Québec Associate

R. Cheng University of Alberta, Edmonton, Alberta

M. Cheung University of Ottawa, Ottawa, Ontario

B. Drouin Pultrall, Thetford-Mines, Québec

H. Dutrisac Cement Association of Canada, Ottawa, Ontario Associate

W. El-Dakhakhni McMaster University, Hamilton, Ontario Associate

N. Erakovic Halcrow Yolles, Toronto, Ontario

G. Fallis Vector Construction Limited, Winnipeg, Manitoba

W. Gold BASF Construction Chemicals-Building Systems, Beachwood, Ohio, USA

M. Green Queen's University, Department of Civil Engineering, Kingston, Ontario Associate

M. Hachborn Res Precast Inc., Innisfil, Ontario
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation and Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Heere</td>
<td>Metro Testing Laboratories Ltd., Burnaby, British Columbia</td>
</tr>
<tr>
<td>H. Hong</td>
<td>University of Western Ontario, Associate</td>
</tr>
<tr>
<td>D. Lau</td>
<td>Carleton University, Department of Civil and Environmental Engineering, Ottawa, Ontario, Associate</td>
</tr>
<tr>
<td>R. McGrath</td>
<td>Cement Association of Canada, Ottawa, Ontario</td>
</tr>
<tr>
<td>K. Neale</td>
<td>Université de Sherbrooke, Sherbrooke, Québec, Associate</td>
</tr>
<tr>
<td>M. Saatcioglu</td>
<td>University of Ottawa, Ottawa, Ontario</td>
</tr>
<tr>
<td>S. Sheikh</td>
<td>University of Toronto, Toronto, Ontario, Associate</td>
</tr>
<tr>
<td>R. Sherping</td>
<td>Sika Canada Inc., Pointe Claire, Québec</td>
</tr>
<tr>
<td>N. Shrive</td>
<td>The University of Calgary, Calgary, Alberta</td>
</tr>
<tr>
<td>D. Svecova</td>
<td>University of Manitoba, Winnipeg, Manitoba, Associate</td>
</tr>
<tr>
<td>C. Taraschuk</td>
<td>National Research Council Canada, Ottawa, Ontario</td>
</tr>
<tr>
<td>A. Weber</td>
<td>Schöck Bauteile GmbH, Baden-Baden, Germany</td>
</tr>
<tr>
<td>M. Tumkur</td>
<td>Canadian Standards Association, Mississauga, Ontario, Project Manager</td>
</tr>
</tbody>
</table>
Preface

This is the second edition of CSA S806, Design and construction of building structures with fibre-reinforced polymers. It supersedes the first edition published in 2002.

This Standard contains provisions for building structures composed of fibre-reinforced polymers (FRP). The fibres are of aramid, carbon, and glass. The polymers are resins that are rigid at room temperature; relevant provisions relate to thermosetting types of resin. The Standard covers general design requirements, limit states design, the properties of FRP components and reinforcing materials, the design of concrete components with FRP reinforcement, the design of concrete components prestressed with FRP, the design of components with surface-bonded FRP, the design of fibre-reinforced concrete (FRC)/FRP composite cladding, and seismic design and construction. Normative annexes provide test procedures that are integral to the Standard, while informative annexes describe best current practice.

CSA acknowledges that the development of this Standard was made possible, in part, by the financial support of the following: American Composites Manufacturers Association — FRP Rebar Manufacturers Council, BP Composites Ltd., Fibrewrap Construction Canada Inc., FReP North America Inc., Hughes Brothers, Inc., ISIS Canada, Public Works Government Services Canada, Pultrall Inc., Schöck, Sika Canada, and Vector Construction.

This Standard was prepared by the Technical Committee on Design and Construction of Building Structures with Fibre-Reinforced Polymers, under the jurisdiction of the Strategic Steering Committee on Structures (Design), and has been formally approved by the Technical Committee.

March 2012

Notes:
(1) Use of the singular does not exclude the plural (and vice versa) when the sense allows.
(2) Although the intended primary application of this Standard is stated in its Scope, it is important to note that it remains the responsibility of the users of the Standard to judge its suitability for their particular purpose.
(3) This publication was developed by consensus, which is defined by CSA Policy governing standardization — Code of good practice for standardization as “substantial agreement. Consensus implies much more than a simple majority, but not necessarily unanimity”. It is consistent with this definition that a member may be included in the Technical Committee list and yet not be in full agreement with all clauses of this publication.
(4) To submit a request for interpretation of CSA Standards, please send the following information to inquiries@csa.ca and include “Request for interpretation” in the subject line:
(a) define the problem, making reference to the specific clause, and, where appropriate, include an illustrative sketch;
(b) provide an explanation of circumstances surrounding the actual field condition; and
(c) where possible, phrase the request in such a way that a specific “yes” or “no” answer will address the issue.
Committee interpretations are processed in accordance with the CSA Directives and guidelines governing standardization and are published in CSA’s Current Standard Activities, which is available on the CSA website at standardsactivities.csa.ca.
(5) CSA Standards are subject to periodic review, and suggestions for their improvement will be referred to the appropriate committee. To submit a proposal for change to CSA Standards, please send the following information to inquiries@csa.ca and include “Proposal for change” in the subject line:
(a) Standard designation (number);
(b) relevant clause, table, and/or figure number;
(c) wording of the proposed change; and
(d) rationale for the change.

March 2012
1 Scope

1.1 General
This Standard provides requirements for the design and evaluation of building components of fibre-reinforced polymers (FRP) in buildings and of building components reinforced with FRP materials. It is based on limit states design principles and is consistent with the National Building Code of Canada.

This Standard does not apply to the design of fibre-reinforced concrete (FRC), except for FRC/FRP cladding as defined in Clause 7.3 and Clause 13.

Note: Procedures, test methods, and specifications are provided in Annexes A to S.

1.2 FRP components
Requirements for the determination of engineering properties and design of self-supporting FRP components are covered by this Standard.

1.3 FRP reinforced components
Requirements for the determination of engineering properties and design of FRP reinforced building components are covered by this Standard. The FRP reinforcing elements covered include bars, tendons, mats, grids, roving, sheets, and laminates.

1.4 Exposure to fire and temperature effects
This Standard requires the designer to consider the possible effects of exposure to fire or elevated temperatures on the performance of FRP components and FRP reinforced components.

1.5 Terminology
In CSA standards, “shall” is used to express a requirement, i.e., a provision that the user is obliged to satisfy in order to comply with the standard; “should” is used to express a recommendation or that which is advised but not required; and “may” is used to express an option or that which is permissible within the limits of the standard.

Notes accompanying clauses do not include requirements or alternative requirements; the purpose of a note accompanying a clause is to separate from the text explanatory or informative material.

Notes to tables and figures are considered part of the table or figure and may be written as requirements.

Annexes are designated normative (mandatory) or informative (nonmandatory) to define their application.