IEEE Guide for Loading Mineral-Oil-Immersed Transformers and Step-Voltage Regulators

IEEE Power & Energy Society

Sponsored by the Transformers Committee
IEEE Guide for Loading Mineral-Oil-Immersed Transformers and Step-Voltage Regulators

Sponsor

Transformers Committee of the IEEE Power & Energy Society

Approved 7 December 2011

IEEE-SA Standards Board
Abstract: General recommendations for loading 65 °C rise mineral-oil-immersed distribution and power transformers are covered.

Keywords: distribution transformer, IEEE C57.91, loading, mineral-oil-immersed, power transformer
Notice and Disclaimer of Liability Concerning the Use of IEEE Documents: IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board. IEEE develops its standards through a consensus development process, approved by the American National Standards Institute, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and serve without compensation. While IEEE administers the process and establishes rules to promote fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the accuracy of any of the information or the soundness of any judgments contained in its standards.

Use of an IEEE Standard is wholly voluntary. IEEE disclaims liability for any personal injury, property or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon any IEEE Standard document.

IEEE does not warrant or represent the accuracy or content of the material contained in its standards, and expressly disclaims any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or that the use of the material contained in its standards is free from patent infringement. IEEE Standards documents are supplied "AS IS."

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard. Every IEEE standard is subjected to review at least every ten years. When a document is more than ten years old and has not undergone a revision process, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity. Nor is IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing any IEEE Standards document, should rely upon his or her own independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate, seek the advice of a competent professional in determining the appropriateness of a given IEEE standard.

Translations: The IEEE consensus development process involves the review of documents in English only. In the event that an IEEE standard is translated, only the English version published by IEEE should be considered the approved IEEE standard.

Official Statements: A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board Operations Manual shall not be considered the official position of IEEE or any of its committees and shall not be considered to be, nor be relied upon as, a formal position of IEEE. At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear that his or her views should be considered the personal views of that individual rather than the formal position of IEEE.

Comments on Standards: Comments for revision of IEEE Standards documents are welcome from any interested party, regardless of membership affiliation with IEEE. However, IEEE does not provide consulting information or advice pertaining to IEEE Standards documents. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Since IEEE standards represent a consensus of concerned interests, it is important to ensure that any responses to comments and questions also receive the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to comments or questions except in those cases where the matter has previously been addressed. Any person who would like to participate in evaluating comments or revisions to an IEEE standard is welcome to join the relevant IEEE working group.

Comments on standards should be submitted to the following address:
Secretary, IEEE-SA Standards Board
445 Hoes Lane
Piscataway, NJ 08854
USA

Photocopies: Authorization to photocopy portions of any individual standard for internal or personal use is granted by The Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.
Notice to users

Laws and regulations

Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with the provisions of any IEEE Standards document does not imply compliance to any applicable regulatory requirements. Implementers of the standard are responsible for observing or referring to the applicable regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

This document is copyrighted by the IEEE. It is made available for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of engineering practices and methods. By making this document available for use and adoption by public authorities and private users, the IEEE does not waive any rights in copyright to this document.

Updating of IEEE documents

Users of IEEE Standards documents should be aware that these documents may be superseded at any time by the issuance of new editions or may be amended from time to time through the issuance of amendments, corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the document together with any amendments, corrigenda, or errata then in effect. In order to determine whether a given document is the current edition and whether it has been amended through the issuance of amendments, corrigenda, or errata, visit the IEEE-SA Website at http://standards.ieee.org/index.html or contact the IEEE at the address listed previously. For more information about the IEEE Standards Association or the IEEE standards development process, visit the IEEE-SA Website at http://standards.ieee.org/index.html.

Errata

Errata, if any, for this and all other standards can be accessed at the following URL: http://standards.ieee.org/findsteds/errata/index.html. Users are encouraged to check this URL for errata periodically.

Interpretations

Current interpretations can be accessed at the following URL: http://standards.ieee.org/findsteds/interps/index.html.
Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect to the existence or validity of any patent rights in connection therewith. If a patent holder or patent applicant has filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed on the IEEE-SA Website http://standards.ieee.org/about/sasb/patcom/patents.html. Letters of Assurance may indicate whether the Submitter is willing or unwilling to grant licenses under patent rights without compensation or under reasonable rates, with reasonable terms and conditions that are demonstrably free of any unfair discrimination to applicants desiring to obtain such licenses.

Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further information may be obtained from the IEEE Standards Association.
Participants

At the time this guide was completed, the C57.91 Working Group had the following membership:

Don Duckett, Chair
Carlo Arpino, Vice Chair
Susan McNelly, Secretary/Technical Editor

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Javier Arteaga</td>
<td>Roger Hayes</td>
<td>Donald Platts</td>
</tr>
<tr>
<td>Peter Balma</td>
<td>Gary Hoffman</td>
<td>Thomas Prevost</td>
</tr>
<tr>
<td>Barry Beaster</td>
<td>Thomas Holifield</td>
<td>Timothy Raymond</td>
</tr>
<tr>
<td>Juan Castellanos</td>
<td>Virenda Jhonsa</td>
<td>Kirk Robbins</td>
</tr>
<tr>
<td>Jonathan Cheatham</td>
<td>Gael Kennedy</td>
<td>Oleg Roizman</td>
</tr>
<tr>
<td>Luiz Cheim</td>
<td>John Lackey</td>
<td>Surinder Sandhu</td>
</tr>
<tr>
<td>Bill Chiu</td>
<td>Michael Lau</td>
<td>Brett Sargent</td>
</tr>
<tr>
<td>Craig Colopy</td>
<td>Richard Marek</td>
<td>H. Jin Sim</td>
</tr>
<tr>
<td>Alan Darwin</td>
<td>Terence Martin</td>
<td>Giuseppe Termini</td>
</tr>
<tr>
<td>Donald Fallon</td>
<td>Phillip McClure</td>
<td>Jim Thompson</td>
</tr>
<tr>
<td>Joseph Foldi</td>
<td>Vinay Mehrotra</td>
<td>Robert Thompson</td>
</tr>
<tr>
<td>Bruce Forsyth</td>
<td>Amitav Mukerji</td>
<td>Robert Tillman</td>
</tr>
<tr>
<td>Michael Franchek</td>
<td>Paul Mushill</td>
<td>Roger Verdolin</td>
</tr>
<tr>
<td>George Frimpong</td>
<td>Van Nghi Nguyen</td>
<td>David Wallach</td>
</tr>
<tr>
<td>Eduardo Garcia</td>
<td>T. V. Oommen</td>
<td>Roger Wicks</td>
</tr>
<tr>
<td>David Goodwin</td>
<td>David Ostrander</td>
<td>Jim Zhang</td>
</tr>
<tr>
<td>Shampa Hakim</td>
<td>Mark Perkins</td>
<td>Hanxin Zhu</td>
</tr>
<tr>
<td>Jack Hammers</td>
<td>Tony Pink</td>
<td>Abderrahmane Zouaghi</td>
</tr>
</tbody>
</table>

The following members of the individual balloting committee voted on this guide. Balloters may have voted for approval, disapproval, or abstention...

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>William J. Ackerman</td>
<td>Don Duckett</td>
<td>John Lackey</td>
</tr>
<tr>
<td>Samuel Aguierre</td>
<td>Fred Elliott</td>
<td>Chung-Yiu Lam</td>
</tr>
<tr>
<td>Stephen Antosz</td>
<td>Gary Engmann</td>
<td>Stephen Lambert</td>
</tr>
<tr>
<td>James Armstrong</td>
<td>James Fairris</td>
<td>Thomas La Rose</td>
</tr>
<tr>
<td>Carlo Arpino</td>
<td>Michael Faulkenberry</td>
<td>Aleksandr Levin</td>
</tr>
<tr>
<td>Peter Balma</td>
<td>Joseph Foldi</td>
<td>Thomas Lundquist</td>
</tr>
<tr>
<td>Barry Beaster</td>
<td>Bruce Forsyth</td>
<td>Richard Marek</td>
</tr>
<tr>
<td>W. J. Bil Bergman</td>
<td>Marcel Fortin</td>
<td>J. Dennis Marlow</td>
</tr>
<tr>
<td>Steven Bezner</td>
<td>David Gilmer</td>
<td>John W. Matthews</td>
</tr>
<tr>
<td>Wallace Binder</td>
<td>Jalal Gohari</td>
<td>Lee Matthews</td>
</tr>
<tr>
<td>Thomas Bishop</td>
<td>James Graham</td>
<td>Philip McClure</td>
</tr>
<tr>
<td>Thomas Blackburn</td>
<td>Randall Groves</td>
<td>Charles Morgan</td>
</tr>
<tr>
<td>Daniel Blaydon</td>
<td>Bal Gupta</td>
<td>Daniel Mulkey</td>
</tr>
<tr>
<td>William Bloethe</td>
<td>J. Harlow</td>
<td>Jerry Murphy</td>
</tr>
<tr>
<td>W. Boettger</td>
<td>David Harris</td>
<td>Ryan Musgrove</td>
</tr>
<tr>
<td>Chris Brooks</td>
<td>Roger Hayes</td>
<td>K. R. M. Nair</td>
</tr>
<tr>
<td>Carl Bush</td>
<td>Gary Heuston</td>
<td>Michael S. Newman</td>
</tr>
<tr>
<td>Juan Castellanos</td>
<td>Gary Hoffman</td>
<td>Joe Nims</td>
</tr>
<tr>
<td>Arvind K. Chaudhary</td>
<td>Thomas Holifield</td>
<td>Ed Te Nyenhuis</td>
</tr>
<tr>
<td>Donald Cherry</td>
<td>Philip Hopkinson</td>
<td>Robert Olen</td>
</tr>
<tr>
<td>C. Clair Claiborne</td>
<td>R. Jackson</td>
<td>Mohamed Omran</td>
</tr>
<tr>
<td>Kurt Clemente</td>
<td>Laszlo Kadar</td>
<td>Bansi Patel</td>
</tr>
<tr>
<td>Michael Coddington</td>
<td>Gael Kennedy</td>
<td>J. Patton</td>
</tr>
<tr>
<td>Jerry Corkran</td>
<td>Morteza Khodiae</td>
<td>Brian Penny</td>
</tr>
<tr>
<td>John Crouse</td>
<td>Joseph L. Koepfinger</td>
<td>Howard Penrose</td>
</tr>
<tr>
<td>Alan Darwin</td>
<td>Neil Kranich</td>
<td>Mark Perkins</td>
</tr>
<tr>
<td>Dieter Dohnal</td>
<td>David Krause</td>
<td>Patrick Picher</td>
</tr>
<tr>
<td>Gary Donner</td>
<td>Jim Kulchisky</td>
<td>Donald Platts</td>
</tr>
<tr>
<td>Randall Dotson</td>
<td>Saumen Kundu</td>
<td>Alvaro Portillo</td>
</tr>
</tbody>
</table>
When the IEEE-SA Standards Board approved this standard on 7 December 2011, it had the following membership:

Richard H. Hulett, Chair
John Kulick, Vice Chair
Robert M. Grow, Past Chair
Judith Gorman, Secretary

Masayuki Ariyoshi
William Bartley
Ted Burse
Clint Chaplin
Wael Diab
Jean-Philippe Faure
Alex Gelman
Paul Houzé

Jim Hughes
Joseph L. Koepfinger*
David Law
Thomas Lee
Hung Ling
Oleg Logvinov
Ted Olsen

Gary Robinson
Jon Rosdahl
Sam Sciacca
Mike Seavey
Curtis Siller
Phil Winston
Howard Wolfman
Don Wright

* Member Emeritus

Also included are the following nonvoting IEEE-SA Standards Board liaisons:

Satish Aggarwal, NRC Representative
Richard DeBlasio, DOE Representative
Michael Janezic, NIST Representative

Catherine Berger
IEEE Standards Project Editor

Erin Spiewak
IEEE Standards Program Manager, Technical Program Development
Introduction

This introduction is not part of IEEE Std C57.91-2011, IEEE Guide for Loading Mineral-Oil-Immersed Transformers and Step-Voltage Regulators.

This guide is applicable to loading 65 °C mineral-oil-immersed distribution and power transformers. Guides for loading, IEEE Std C57.91-1981 (prior edition), IEEE Std C57.92™-1981, and IEEE Std C57.115-1991 (redesignated as IEEE Std 756) are all combined in this document as the basic theory of transformer loading is the same, whether the subject is distribution transformers, power transformers 100 MVA and smaller, or transformers larger than 100 MVA. In recognition of different types of construction, special considerations, and the degree of conservatism involved in the loading of this equipment, specific sections are devoted to power transformers and distribution transformers. In the previously referenced information, the guide for units larger than 100 MVA referenced the IEEE Std C57.92-1981 loading guide for units up to and including 100 MVA.

This update to the work done in 1995 expands the scope to include step-voltage regulators and replaces Annex A with an improved discussion on bubble evolution. Subclause 8.4 was added for step-voltage regulators. In addition, the formula notations were changed to reflect the updated IEEE style and a number of typographical errors were fixed. Both Clause 7 and Annex G calculation procedures remain in place. Clause J was removed as out-of-date information and is expected to be re-introduced in the future in a new standard on transformer monitoring systems. Annex C and Annex G were changed from normative to informative.

As IEEE Std C57.12.00-2010 has adopted an insulation life of 180,000 hours at 110°C, Table 2 of this guide has been moved to Annex I for historical reference.

In previous guides, different insulation aging curves were used for power transformers and distribution transformers. This was caused by the different evaluation procedures used. The distribution transformer curve was based on aging tests of actual transformers. The power transformer curve was based on aging insulation samples in test containers to achieve 50% retention of tensile strength. Investigation of cellulosic insulating materials removed from transformers that had long service life has led knowledgeable people to question the validity of the 50% criteria. One newer criteria suggested is 25% retention. This guide will permit the user to select the criteria most acceptable to their need, based on percent strength retention, polymerization index, etc. An insulation aging factor may thus be applied.

A per unit life concept and aging acceleration factor are provided in this loading guide. The equations given may be used to calculate percent loss of total insulation life, as has been the practice in earlier editions of the transformer loading guides. The relationship between insulation life and transformer life is a question that remains to be resolved. It is recognized that under the proper conditions, transformer life can well exceed the life of the insulation.

The assumed characteristics used in previous guides contained tables of loading capability based on assumed typical transformer characteristics. These assumed characteristics were recognized as not being those of actually built units, which may have a wide range of characteristics. In this guide these tables were removed since computer technology permits calculation of loading capability based on specific transformer characteristics.

Two methods of calculating temperatures are given in this guide. Clause 7 contains temperature equations similar to those used in previous editions of this guide. These equations use the winding hot spot rise over tank top oil and assume that the oil temperature in the cooling ducts is the same as the tank top oil during overloads. Recent research using imbedded thermocouples and fiber optic detectors indicates that the fluid
flow occurring in the windings during transient heating and cooling is an extremely complicated phenomena to describe by simple equations. These recent investigations have shown that during overloads, the temperature of the oil in the winding cooling ducts rises rapidly and exceeds the top-oil temperature in the tank. An alternate set of equations based on this concept is given in Annex G. The change of losses with temperature and liquid viscosity effects, and variable ambient temperature was incorporated into the equations. A computer program based on these equations is given for evaluation by the industry. Research in this field is ongoing at this time and may be incorporated into future revisions of this guide.

Changes in the guide, in addition to the consolidation, include information to more accurately load transformers operating down to a −30 °C ambient, this information concerns loss of diversity due to cold load pick-up or unusually low ambient temperatures.

Transformers rated 55 °C rise were generally replaced as a standard offering by most manufacturers about 1966. Their replacements were originally rated 55/65 °C and in 1977 the single 65 °C rated transformers became the industry standard offering. The higher temperature ratings are based on thermally upgraded oil-paper-enamel insulation systems. Loading of 55 °C insulation system transformers is covered in Annex D.

Suggestions for improvement gained in the use of this guide will be welcomed. They should be sent to the IEEE Standards Department.
Contents

1. Overview .. 1
 1.1 Scope ... 1
 1.2 Purpose .. 1

2. Normative references .. 2

3. Definitions .. 2

4. Effect of loading beyond nameplate rating ... 3
 4.1 General ... 3
 4.2 Voltage and frequency considerations .. 3
 4.3 Supplemental cooling of existing self-cooled transformers ... 4
 4.4 Information for user calculations ... 4

5. Transformer insulation life ... 5
 5.1 General ... 5
 5.2 Aging equations ... 6
 5.3 Percent loss of life .. 10

6. Ambient temperature and its influence on loading .. 11
 6.1 General .. 11
 6.2 Approximating ambient temperature for air-cooled transformers .. 11
 6.3 Approximating ambient temperature for water-cooled transformers ... 11
 6.4 Influence of ambient on loading for normal life expectancy ... 11

7. Calculation of temperatures ... 12
 7.1 Load cycles ... 12
 7.2 Calculation of temperatures ... 14
 7.3 Computer calculation of loading capability ... 21
 7.4 Bibliography for Clause 7 ... 22

8. Loading of distribution transformers and step-voltage regulators .. 24
 8.1 Life expectancy ... 24
 8.2 Limitations ... 24
 8.3 Types of loading ... 25
 8.4 Loading specific to voltage regulators .. 28

9. Loading of power transformers ... 29
 9.1 Types of loading and their interrelationship .. 29
 9.2 Limitations ... 30
 9.3 Normal life expectancy loading ... 31
 9.4 Planned loading beyond nameplate rating .. 34
 9.5 Long-time emergency loading ... 34
 9.6 Short-time emergency loading .. 34
 9.7 Loading information for specifications ... 35
 9.8 Operation with part or all of the cooling out of service ... 35
Annex A (normative) Thermal evolution of gas from transformer insulation .. 36
 A.1 General ... 36
 A.2 Experimental verification .. 37
 A.3 Determination of equation parameters ... 38
 A.4 Example .. 38
 A.5 Bibliography for Annex A .. 39

Annex B (normative) Effect of loading transformers above nameplate rating on bushings, tap changers, and auxiliary components .. 41
 B.1 Bushings .. 41
 B.2 Tap-changers ... 42
 B.3 Bushing-type current transformers ... 45
 B.4 Insulated lead conductors .. 45
 B.5 Bibliography for Annex B .. 45

Annex C (informative) Calculation methods for determining ratings and selecting transformer size 46
 C.1 General ... 46
 C.2 Calculation determining loading beyond nameplate rating of an existing transformer 46
 C.3 Planned loading beyond nameplate (PLBN) .. 51
 C.4 Long-time emergency loading (LTE) .. 52
 C.5 Short-time emergency (STE) loading .. 53

Annex D (normative) Philosophy of guide applicable to transformers with 55 °C average winding rise (65 °C hottest-spot rise) insulation systems .. 55
 D.1 General .. 55
 D.2 Aging equations .. 56

Annex E (normative) Unusual temperature and altitude conditions ... 57
 E.1 Unusual temperatures and altitude ... 57
 E.2 Effect of altitude on temperature rise .. 57
 E.3 Operation at rated kVA .. 57
 E.4 Operation at less than rated kVA .. 57
 E.5 Bibliography for Annex E .. 58

Annex F (normative) Cold-load pickup (CLPU) ... 59
 F.1 General ... 59
 F.2 Duration of loads .. 59
 F.3 CLPU ratio ... 59
 F.4 Other considerations ... 60
 F.5 Bibliography for Annex F .. 61

Annex G (informative) Alternate temperature calculation method .. 62
 G.1 General ... 62
 G.2 List of symbols .. 62
 G.3 Equations .. 66
 G.4 Discussion .. 80
 G.5 Disclaimer statement .. 81
 G.6 Computer program Input data for computer program .. 81
 G.7 Bibliography for Annex G ... 91

Annex H (normative) Operation with part or all of the cooling out of service .. 92
 H.1 General .. 92
 H.2 ONAN/ONAF transformers ... 92
 H.3 ONAN/ONAF/ONAN, ONAN/ONAF/OFAF, and ONAN/OFAF/OFAF transformers 92
 H.4 OFAF and OFWF transformers ... 92
 H.5 Forced-oil-cooled transformers with part of coolers in operation ... 96

Copyright © 2012 IEEE. All rights reserved.
Annex I (informative) Transformer insulation life ... 97
I.1 Historical perspectives ... 97
I.2 Thermal aging principles .. 98
I.3 Example calculations ... 102
I.4 Bibliography for Annex I .. 106
IEEE Guide for Loading Mineral-Oil-Immersed Transformers and Step-Voltage Regulators

IMPORTANT NOTICE: This standard is not intended to ensure safety, security, health, or environmental protection. Implementers of the standard are responsible for determining appropriate safety, security, environmental, and health practices or regulatory requirements.

This IEEE document is made available for use subject to important notices and legal disclaimers. These notices and disclaimers appear in all publications containing this document and may be found under the heading “Important Notice” or “Important Notices and Disclaimers Concerning IEEE Documents.” They can also be obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/disclaimers.html.

1. Overview

1.1 Scope

This guide provides recommendations for loading mineral-oil-immersed transformers and step-voltage regulators with insulation systems rated for a 65 °C average winding temperature rise at rated load. This guide applies to transformers manufactured in accordance with IEEE Std C57.12.001 and tested in accordance with IEEE Std C57.12.90, and step-voltage regulators manufactured and tested in accordance with IEEE Std C57.15. Because a substantial population of transformers and step-voltage regulators with insulation systems rated for 55 °C average winding temperature rise at rated load are still in service, recommendations that are specific to this equipment are also included.

1.2 Purpose

Applications of loads in excess of nameplate rating involve some degree of risk. It is the purpose of this guide to identify these risks and to establish limitations and guidelines, the application of which will minimize the risks to an acceptable level.

1 Information of references can be found in Clause 2.