EXECUTIVE COMMITTEE
2011-2012

Voting Members

Officers:

President: Susan Martinovich, P.E., Nevada
Vice President: Kirk T. Steudle, P.E., Michigan
Secretary-Treasurer: Carlos Braceras, Utah

Regional Representatives:

REGION I: Beverley K. Swaim-Staley, Maryland One-Year Term
 Jeffrey B. Mullan, Massachusetts Two-Year Term
REGION II: Mike Hancock, Kentucky One-Year Term
 Robert St. Onge, South Carolina Two-Year Term
REGION III: Thomas K. Sorel, Minnesota One-Year Term
 Vacant Two-Year Term
REGION IV: Amadeo Saenz, Jr., Texas One-Year Term
 Francis G. Ziegler, P.E., North Dakota Two-Year Term

Nonvoting Members

Immediate Past President: Vacant
AASHTO Executive Director: John Horsley, Washington, DC
FOREWORD

Following the 1971 San Fernando earthquake, significant effort was expended to develop comprehensive design guidelines for the seismic design of bridges. That effort led to updates of both the AASHTO and Caltrans design provisions and ultimately resulted in the development of ATC-6, Seismic Design Guidelines for Highway Bridges, which was published in 1981. That document was subsequently adopted by AASHTO as a Guide Specification in 1983; the guidelines were formally adopted into the Standard Specifications for Highway Bridges in 1991, then revised and reformatted as Division I-A. Later, Division I-A became the basis for the seismic provisions included in the AASHTO LRFD Bridge Design Specifications.

After damaging earthquakes in 1980s and 1990s, and as more recent research efforts were completed, it became clear that improvements to the seismic design practice for bridges should be undertaken. Several efforts culminated in the publication of ATC-32, Improved Seismic Design Criteria for California Bridges: Provisional Recommendations in 1996; the development of Caltrans’ Seismic Design Criteria; publication of MCEER/ATC-49 (NCHRP 12-49), Recommended LRFD Guidelines for the Seismic Design of Highway Bridges in 2003; and the development of the South Carolina Seismic Design Specifications in 2001. Thus in 2005, with the T-3 Seismic Design Technical Committee’s support, work began to identify and consolidate the best practices from these four documents into a new seismic design specification for AASHTO. The resulting document was founded on displacement-based design principles, recommended a 1000-yr return period earthquake ground motion, and comprised a new set of guidelines for seismic design of bridges. During 2007, a technical review team refined the document into the Guide Specifications that were adopted at the 2007 annual AASHTO Highways Subcommittee on Bridges and Structures meeting. The following year, further refinement was completed by the team and was adopted. The 2007 document, combined with the modifications approved in 2008, form the basis of these Guide Specifications.

The scope of these Guide Specifications covers seismic design for typical bridge types and applies to noncritical and non-essential bridges. The title of the document reflects the fact that the Guide Specifications are approved as an alternate to the seismic provisions in the AASHTO LRFD Bridge Design Specifications. These Guide Specifications differ from the current procedures in the LRFD Specifications in the use of displacement-based design procedures, instead of the traditional, force-based “R-Factor” method. This new approach is split into a simplified implicit displacement check procedure and a more rigorous pushover assessment of displacement capacity. The selection of which procedure to use is based on seismic design categories, similar to the seismic zone approach used in the AASHTO LRFD Bridge Design Specifications. Also included is detailed guidance and commentary on earthquake-resisting elements and systems, global design strategies, demand modeling, capacity calculation, and liquefaction effects. Similar to the LRFD force-based method, capacity design procedures underpin the Guide Specifications’ methodology, and these procedures include prescriptive detailing for plastic hinging regions and design requirements for capacity protection of those elements that should not experience damage.

These Guide Specifications incorporate recent experience, best practices, and research results and represent a significant improvement over the traditional force-based approach. It is expected that these Guide Specifications will be revised as refinements or improvements become available.

AASHTO Highways Subcommittee on Bridges and Structures
ACKNOWLEDGMENTS

This work was sponsored by the American Association of State Highway and Transportation Officials, in cooperation with the Federal Highway Administration, and was conducted in the National Cooperative Highway Research Program (NCHRP), which is administered by the Transportation Research Board of the National Research Council. The first edition of any technical publication is especially labor intensive. AASHTO’s Highways Subcommittee on Bridges and Structures gratefully acknowledges the contributions of the following people:

AASHTO Technical Committee for Seismic Design

NCHRP Project 20-07, Task 193—Principal Investigator, Roy A. Imbsen of Imbsen Consulting

The technical review team:

- Mark Mahan, CA DOT (Team Leader, 2007)
- Lee Marsh, BERGER/ABAM Engineers (Team Leader, 2008)
- Roy A. Imbsen, Imbsen Consulting
- Elmer Marx, AK DOT
- Jay Quiogue, CA DOT
- Chris Unanwa, CA DOT
- Fadel Alameddine, CA DOT
- Chyuan-Shen Lee, WSDOT
- Stephanie Brandenberger, MT DOT
- Daniel Tobias, IL DOT
- Derrell Manceaux, FHWA
- Tony Allen, WSDOT
- Don Anderson, CH2M Hill

1000-yr Maps and Ground Motion CD Tool—Ed V. Leyendecker, USGS
This second edition of the *Guide Specifications for LRFD Seismic Bridge Design* includes technical content approved by the Highways Subcommittee on Bridges and Structures through 2011. In addition to revising the first edition content, the authors have added Appendix B, “Design Flowcharts.”

An abbreviated table of contents follows this preface. Detailed tables of contents precede each Section and Appendix.

AASHTO Publications Staff
<table>
<thead>
<tr>
<th>SECTION 1: INTRODUCTION</th>
<th>1-i</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTION 2: DEFINITIONS AND NOTATION</td>
<td>2-i</td>
</tr>
<tr>
<td>SECTION 3: GENERAL REQUIREMENTS</td>
<td>3-i</td>
</tr>
<tr>
<td>SECTION 4: ANALYSIS AND DESIGN REQUIREMENTS</td>
<td>4-i</td>
</tr>
<tr>
<td>SECTION 5: ANALYTICAL MODELS AND PROCEDURES</td>
<td>5-i</td>
</tr>
<tr>
<td>SECTION 6: FOUNDATION AND ABUTMENT DESIGN</td>
<td>6-i</td>
</tr>
<tr>
<td>SECTION 7: STRUCTURAL STEEL COMPONENTS</td>
<td>7-i</td>
</tr>
<tr>
<td>SECTION 8: REINFORCED CONCRETE COMPONENTS</td>
<td>8-i</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>R-1</td>
</tr>
<tr>
<td>APPENDIX A: FOUNDATION-ROCKING ANALYSIS</td>
<td>A-i</td>
</tr>
<tr>
<td>APPENDIX B: DESIGN FLOWCHARTS</td>
<td>B-i</td>
</tr>
</tbody>
</table>
SECTION 1: INTRODUCTION

TABLE OF CONTENTS

1.1—BACKGROUND .. 1-1

1.2—TECHNICAL ASSISTANCE AGREEMENT BETWEEN AASHTO AND USGS 1-2
 1.2.1—Maps .. 1-3
 1.2.2—Ground Motion Tool ... 1-3

1.3—FLOWCHARTS ... 1-4
SECTION 1:
INTRODUCTION

1.1—BACKGROUND

The state of practice of the seismic design of bridges is continually evolving, and the AASHTO Guide Specifications for LRFD Seismic Bridge Design was developed to incorporate improvements in the practice that have emerged since publication of ATC 6, Seismic Design Guidelines for Highway Bridges, the basis of the current AASHTO seismic design provisions. While small improvements have been incorporated into the AASHTO seismic design procedures in the intervening years since ATC 6 was published in 1981, these Guide Specifications and related changes to the current AASHTO LRFD Bridge Design Specifications represent the first major overhaul of the AASHTO procedures. The development of these Guide Specifications was performed in accordance with the recommendations of the NCHRP 20-07/Task 193 Task 6 Report. The Task 6 effort combined and supplemented existing completed efforts (i.e., AASHTO Standard Specifications Division I-A, NCHRP 12-49 guidelines, SCDOT specifications, Caltrans Seismic Design Criteria, NYCDOT Seismic Intensity Maps (1998), and ATC-32) into a single document that could be used at a national level to design bridges for seismic effects. Based on the Task 6 effort and that of a number of reviewers, including representatives from State Departments of Transportation, the Federal Highway Administration, consulting engineers, and academic researchers, these Guide Specifications were developed.

Key features of these Guide Specifications follow:

- Adopt the seven percent in 75 yr design event for development of a design spectrum.
- Adopt the NEHRP Site Classification system and include site factors in determining response spectrum ordinates.
- Ensure sufficient conservatism (1.5 safety factor) for minimum support length requirement. This conservatism is needed to accommodate the full capacity of the plastic hinging mechanism of the bridge system.
- Establish four Seismic Design Categories (SDCs) with the following requirements:

SDC A
- No displacement capacity check needed
- No capacity design required
- SDC A minimum requirements
- No liquefaction assessment required

C1.1

This commentary is included to provide additional information to clarify and explain the technical basis for the specifications provided in the Guide Specifications for LRFD Seismic Bridge Design. These specifications are for the design of new bridges.

The term “shall” denotes a requirement for compliance with these Specifications.

The term “should” indicates a strong preference for a given criterion.

The term “may” indicates a criterion that is usable, but other local and suitably documented, verified, and approved criterion may also be used in a manner consistent with the LRFD approach to bridge design.

The term “recommended” is used to give guidance based on past experiences. Seismic design is a developing field of engineering that has not been uniformly applied to all bridge types; thus, the experiences gained to date on only a particular type are included as recommendations.