CONTENTS

FOREWORD ... xv
PREFACE ... xvii

How to Use This ASHRAE GreenGuide xvii
ACKNOWLEDGMENTS .. xix

SECTION I: BASICS

CHAPTER 1—GREEN/SUSTAINABLE HIGH-PERFORMANCE DESIGN 3

Introduction ... 3
Relationship to Sustainability .. 5
“Good” Design ... 5
Commitment to Green/Sustainable High-Performance Projects 6
What Drives Green Projects ... 6
Ingredients of a Successful Green Project Endeavor 7
The Engineering/Energy Conservation Ethic 9
Incentives ... 9
Building Team Spirit ... 12

CHAPTER 2—BACKGROUND AND FUNDAMENTALS 17

Sustainability in Architecture ... 17
Fundamentals of Related Engineering Topics 23
Applications to HVAC&R Systems and Processes 29
Summary of Engineering Application Fundamentals 37
References and Resources ... 37
SECTION 2: THE DESIGN PROCESS

CHAPTER 3—COMMISSIONING ... 41
CxA’s Role and Owner’s Project Requirements 43
Commissioning Phases .. 44
Selection of a CxA .. 50
Selection of Systems to Commission 50
Commissioning Models .. 51
A Commissioning Checklist ... 52

CHAPTER 4—ARCHITECTURAL DESIGN IMPACTS 55
Site Location ... 55
Site Orientation ... 56
Building Form/Geometry ... 56
Building Envelope ... 57
Arrangement/Grouping of Spaces 60
Climatic Impacts ... 61
Interdependency ... 62
Building-Type GreenTips .. 62

CHAPTER 5—THE DESIGN PROCESS—EARLY STAGES 73
Overview ... 73
The Owner’s Role .. 76
The Design Team .. 76
The Engineer’s Role ... 82
Project Delivery Methods and Contractor Selection 83
Successful Approaches to Design 85
Concept Development .. 88
Expressing and Testing Concepts 91
Verbal ... 91
Diagrammatic/Pictorial ... 91
Modeling ... 91
Building Information Modeling 93

CHAPTER 6—LEED GUIDANCE FOR HVAC ENGINEERS 101
LEED Credits Affecting Minimum Energy Performance (MEP) Design . 101
Sustainable Sites (SS) Credits Affecting MEP Design 102
Water Efficiency (WE) Credits Affecting MEP Design 105
Energy and Atmosphere Credits Affecting MEP Design 108
CHAPTER 10—ENERGY DISTRIBUTION SYSTEMS 195
Steam .. 195
Hydronics ... 198
Air .. 202
Electric ... 203

CHAPTER 11—ENERGY CONVERSION SYSTEMS 207
Heat Generators (Heating Plants) 207
Cooling Generators (Chilled-Water Plants) 207
Distributed Electricity Generation 209
References ... 215
Summary ... 215

CHAPTER 12—ENERGY/WATER SOURCES 251
Renewable/Nonrenewable Energy Sources 251
Solar .. 253
Wind .. 260
Hydro ... 262
Biomass ... 262
Water .. 262

CHAPTER 13—LIGHTING SYSTEMS .. 275
Electric Lighting ... 275
Daylight Harvesting ... 286
The Light Conveyor .. 289
Lighting Controls ... 289
Cost Considerations 291
Sources of Further Information 292

CHAPTER 14—PLUMBING AND FIRE PROTECTION SYSTEMS 297
Water Supply .. 297
Domestic Water Heating 298
Sanitary Waste .. 299
Storm Drainage ... 299
Fire Protection .. 299
Fire Suppression Systems 299
Smoke Management Systems 299
CHAPTER 15—BUILDING CONTROL SYSTEMS 315
 Introduction ... 315
 Control System Role in Delivering Energy Efficiency 316
 Control System Role in Delivering Water Efficiency 317
 Control System Role in Delivering IEQ 318
 Control System Commissioning Process 319
 Control System Role in Attaining LEED Certification 322
 Designing for Sustained Efficiency 329
 References to Other Sources of Information 330

CHAPTER 16—COMPLETING DESIGN AND DOCUMENTATION FOR CONSTRUCTION 337
 Drawings/Documents Stage ... 337
 Specifying Materials/Equipment 337
 Cost Estimating and Budget Reconciliation 338

SECTION 3: POST-DESIGN—CONSTRUCTION TO DEMOLITION

CHAPTER 17—CONSTRUCTION .. 347
 Construction Practices and Methods 347
 The Engineer’s Role in Construction Quality 348

CHAPTER 18—OPERATION/Maintenance/Performance Evaluation 351
 Commissioning for Building Occupancy 351
 Retrocommissioning (SM). ... 352
 Occupant Surveys .. 353
 Disposal/Recycling .. 354

AFTERWORD: BACKGROUND TO THE DEVELOPMENT OF THIS GUIDE—
PREFACE TO THE FIRST EDITION 357
 Background on the ASHRAE GreenGuide’s Development 357
 What the ASHRAE GreenGuide Is and Is Not 357
 Who Should Use the ASHRAE GreenGuide 358
 How to Use This ASHRAE GreenGuide 359

BIBLIOGRAPHY .. 361

TERMS, DEFINITIONS, AND ACRONYMS 383

INDEX ... 389
ASHRAE Building-Type GreenTip #1: Performing Arts Spaces 63
ASHRAE Building-Type GreenTip #2: Health Care Facilities 65
ASHRAE Building-Type GreenTip #3: Laboratory Facilities 67
ASHRAE Building-Type GreenTip #4: Student Residence Halls 69
ASHRAE Building-Type GreenTip #5: Athletic and Recreation Facilities 71
ASHRAE GreenTip #6: Night Precooling 138
ASHRAE GreenTip #7: Air-to-Air Energy Recovery—Heat Exchange Enthalpy Wheels 150
ASHRAE GreenTip #8: Air-to-Air Energy Recovery—Heat Pipe Systems 153
ASHRAE GreenTip #9: Air-to-Air Energy Recovery—Run-Around Systems 155
ASHRAE GreenTip #10: Displacement Ventilation 157
ASHRAE GreenTip #11: Dedicated Outdoor Air Systems 160
ASHRAE GreenTip #12: Ventilation Demand Control Using CO₂ 162
ASHRAE GreenTip #13: Hybrid Ventilation 164
ASHRAE GreenTip #14: Pulse-Powered Chemical-Free Water Treatment 191
ASHRAE GreenTip #15: Variable Flow/Variable Speed Pumping Systems 204
ASHRAE GreenTip #16: CHP Systems 216
ASHRAE GreenTip #17: Low-NOₓ Burners 220
ASHRAE GreenTip #18: Combustion Air Preheating 222
ASHRAE GreenTip #19: Combination Space/Water Heaters 224
ASHRAE GreenTip #20: Ground-Source Heat Pumps 226
ASHRAE GreenTip #21: Water-Loop Heat Pump Systems 230
ASHRAE GreenTip #22: Thermal Energy Storage for Cooling 233
ASHRAE GreenTip #23: Double-Effect Absorption Chillers 238
ASHRAE GreenTip #24: Gas-Engine-Driven Chillers 240
ASHRAE GreenTip #25: Gas-Fired Chiller/Heaters 242
ASHRAE GreenTip #26: Desiccant Cooling and Dehumidification 244
ASHRAE GreenTip #27: Indirect Evaporative Cooling 247
ASHRAE GreenTip #29: Active Solar Thermal Energy Systems 266
ASHRAE GreenTip #30: Solar Energy System—Photovoltaic 269
ASHRAE GreenTip #31: Solar Protection 272
Ashrae GreenTip #32: Light Conveyors	294
Ashrae GreenTip #33: Water-Conserving Plumbing Fixtures	300
Ashrae GreenTip #34: Graywater Systems	304
Ashrae GreenTip #35: Point-of-Use Domestic Hot-Water Heaters	307
Ashrae GreenTip #36: Direct-Contact Water Heaters	310
Ashrae GreenTip #37: Rainwater Harvesting	312
Ashrae GreenTip #38: Mixed Air Temperature Reset	331
Ashrae GreenTip #39: Cold Deck Temperature Reset with Humidity Override	334

Building-Type Greentips

Ashrae Building-Type GreenTip #1: Performing Arts Spaces	63
Ashrae Building-Type GreenTip #2: Health Care Facilities	65
Ashrae Building-Type GreenTip #3: Laboratory Facilities	67
Ashrae Building-Type GreenTip #4: Student Residence Halls	69
Ashrae Building-Type GreenTip #5: Athletic and Recreation Facilities	71

Sidebars

International Perspective	12
Justifications for Green Design	14
Some Definitions and Views of Sustainability from Other Sources	16
One Design Firm’s Commissioning Checklist	52
NREL’s Nine-Step Process for Low-Energy Building Design	97
One Firm’s Green Building Design Process Checklist	98
Canada’s C-2000 Program	99
Key Considerations in the HVAC Design Process	136
One Design Firm’s Materials Specification Checklist	342
Construction Factors to Consider in a Green Design	350
One Design Firm’s Operations, Maintenance, and Performance Evaluation Checklist	355