Psychrometrics—Theory and Practice
This publication was prepared as ASHRAE Research Project 872-RP.
Cognizant Technical Committee: TC 1.1
Principal Investigators:
Dr. Joseph Olivieri, P.E. and Dr. Trilochan Singh,
Co-investigator:
Steve Lovdocky

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
This publication was prepared as ASHRAE Research Project 872-RP.
Cognizant Technical Committee: TC 1.1
Principal Investigators:
Dr. Joseph Olivieri, P.E. and Dr. Trilochan Singh,
Co-Investigator:
Steve Lovdocky

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
CONTENTS

CHAPTER 1: THERMODYNAMIC PROPERTIES OF DRY AND MOIST AIR AND WATER

1.1 INTRODUCTION .. 3
1.2 THE COMPOSITION OF DRY AND MOIST AIR .. 3
 1.2.1 Dry Air Constituents ... 3
 1.2.2 The Water Vapor Molecule .. 4
 1.2.3 Molecular Weight and Gas Constants ... 5
 1.2.4 Fundamental Humidity Parameters ... 6
 1.2.5 Standard Atmosphere ... 9
 1.2.6 The Variation of Barometric Pressure and Temperature with Altitude 9

1.3 THE SATURATION OF MOIST AIR .. 10
 1.3.1 Evaporation, Condensation, and Sublimation of Water 10
 1.3.2 Humidity Parameters Relating to Saturation ... 11
 1.3.3 Water Vapor Saturation Pressure ... 12
 1.3.4 Fogged Air .. 14

1.4 GENERAL EQUATIONS FOR THE DETERMINATION OF DRY AND MOIST AIR AND WATER PROPERTIES .. 14
 1.4.1 Virial Equation of State .. 15
 1.4.2 Volume ... 24
 1.4.3 Enthalpy .. 26
 1.4.4 Entropy ... 29
 1.4.5 Moist Air at Saturation .. 31

1.5 THE USE OF TABLES FOR CALCULATION OF MOIST AIR PROPERTIES 33
 1.5.1 Standard Barometric Pressure (101.325 kPa, 29.921 in. Hg) 33
 1.5.2 Pressures Other Than Standard .. 41
 1.5.3 Equation to Calculate Properties of Saturated Steam 44

1.6 THERMODYNAMIC WET-BULB TEMPERATURE ... 46
 1.6.1 Definition ... 46
 1.6.2 The Adiabatic Saturation Process .. 47
 1.6.3 Determination of Moist Air Properties Using System Thermodynamic Analysis . 47
 1.6.4 Psychrometrics of Fogged Air .. 49

1.7 PERFECT (IDEAL) GAS RELATIONSHIPS FOR DRY AND MOIST AIR 51
 1.7.1 Perfect Gases and Perfect Gas Mixtures .. 51
 1.7.2 Humidity Ratio, Degree of Saturation ... 52
 1.7.3 Volume .. 54
 1.7.4 Entropy .. 54
 1.7.5 Entropy .. 55
 1.7.6 Humidity Ratio .. 55
 1.7.7 Dew-Point Temperature ... 55
 1.7.8 Dew-Point Temperature Error ... 56

1.8 CALCULATION PROCEDURES FOR PERFECT GAS RELATIONSHIPS 58

1.9 PSYCHROMETRIC CHARTS .. 68

1.10 CALCULATED HYLAND AND WEXLER VALUES FOR JUDGING ACCURACY OF SOFTWARE ... 68

1.11 ADDITIONAL SOURCES OF DATA FOR THE THERMODYNAMIC PROPERTIES OF DRY AND MOIST AIR ... 81

1.12 TRANSPORT PROPERTIES OF DRY, MOIST AIR AND WATER 82
 1.12.1 Transport Properties of Water .. 83
1.11 THERMODYNAMIC PROPERTIES OF WATER 83
1.12.1 Ice (Solid) .. 84
1.12.2 Water (Liquid) .. 84
1.12.3 Steam (Vapor) ... 84
1.12.4 General Information 85

REFERENCES .. 88

CHAPTER 2: MEASUREMENTS OF THE PROPERTIES OF MOIST AIR

2.1 INTRODUCTION .. 93
2.2 CLASSIFICATION OF SENSORS 93
2.3 TERMS RELATING TO HUMIDITY MEASUREMENT 93
2.4 CONSIDERATIONS IN THE SELECTION OF HUMIDITY INSTRUMENTS 94
2.5 GENERAL INSTRUMENT CHARACTERISTICS 96

2.6 RELATIVE HUMIDITY HYGROMETERS 97
2.6.1 Electric and Electronic Hygrometers 98
2.6.2 Mechanical Hygrometers (Dimensional Change) 103
2.6.3 Electrolytic Hygrometers 104
2.6.4 Piezoelectric Sorption (Quartz Crystal) 104
2.6.5 Color Change Hygrometers (Salts) 104

2.7 ABSOLUTE HUMIDITY HYGROMETERS 105
2.7.1 Chilled-Mirror Dew-Point Hygrometer 105
2.7.2 Salt-Phase Heated Hygrometer (Lithium Chloride) 108
2.7.3 Wyle Salt Crystal (Single Ionic Crystal) 108
2.7.4 Adiabatic Expansion 108
2.7.5 Coulometric Hygrometer 109
2.7.6 Pneumatic Bridge Hygrometer 110
2.7.7 Surface Acoustic Wave Device (SAW) 110
2.7.8 Hygrometers Based on Measuring Speed of Sound and Temperature (Sonic) ... 110
2.7.9 Radiation Absorption (Infrared/Lyman-alpha) 111
2.7.10 Chemical Reactant .. 111
2.7.11 Wet- and Dry-Bulb Psychrometer 111
2.7.12 Adiabatic Saturation 111
2.7.13 Thermal Conductivity 112

2.8 HYGROMETER CALIBRATION 112

2.9 CLASSIFICATION OF CALIBRATION STANDARDS 113
2.9.1 Gravimetric Hygrometer (NIST) 113
2.9.2 Precision Humidity Generators 114
2.9.3 Secondary Standards 115
2.9.4 Working Standards 117

2.10 CONCLUSION ... 117

REFERENCES .. 117

CHAPTER 3: DETAILED DISCUSSION OF THE DRY- AND WET-BULB PSYCHROMETER

3.1 INTRODUCTION .. 121
3.2 COMMON FACTORS REGARDING PSYCHROMETERS 121
3.3 SLING PSYCHOMETER .. 123
3.4 ASPIRATION PSYCHROMETERS 124
3.5 THERMOUPLE PSYCHROMETERS 125
3.6 DRY- AND WET-BULB THERMOMETERS IN DUCTS 126
3.7 THEORY OF THE NONASPIRATED PSYCHROMETER 127
3.8 FORMULAS FOR CALCULATING RELATIVE HUMIDITY 127
3.9 USE OF PSYCHROMETERS AT LOW AND HIGH TEMPERATURES 129
3.9.1 Measurements at Temperatures Above 60°C 129
3.9.2 Frost Zone Measurements 129
3.10 NEED FOR IMPROVED PSYCHROMETER 129
3.11 CONCLUSION ... 130

REFERENCES .. 131

CHAPTER 4: APPLICATIONS OF PSYCHROMETRIC PRINCIPLES

4.1 INTRODUCTION .. 133
4.2 THE BUILDING INDUSTRY 135
4.2.1 Air Conditioning and Ventilation of Buildings 136
4.2.2 Humidification of Buildings 140
4.2.3 Sound Absorption in Acoustical Engineering Problems 141
4.2.4 Moisture and Roofing 141
4.2.5 Condensation in Buildings 141
4.2.6 Moisture in Concrete 142
4.3 THE PAPER INDUSTRY ... 142
4.4 INDUSTRIAL DRYING SYSTEMS 143
4.5 DRYING AND STORAGE OF GRAIN 145
4.6 FOOD PRESERVATION ... 147
4.7 FOG SPRAY HUMIDIFICATION IN COLD STORAGE 148
4.8 METEOROLOGY ... 148
4.8.1 Measurement Methods 148
4.8.2 Moisture and Hurricanes 149
4.8.3 Greenhouse Effect and the Weather 150
4.9 FOG .. 151
4.10 SURVIVAL SHELTERS .. 152
4.11 MISCELLANEOUS APPLICATIONS 153
4.11.1 Comfort and Health 153
4.11.2 Odors ... 153
4.11.3 Air-to-Air Heat Recovery Equipment 153
4.11.4 Humidification and Dehumidification 155
1.13 THERMODYNAMIC PROPERTIES OF WATER 83
1.13.1 Ice (Solid) 84
1.13.2 Water (Liquid) 84
1.13.3 Steam (Vapor) 84
1.13.4 General Information 85

NOMENCLATURE 85

REFERENCES 88

CHAPTER 2: MEASUREMENTS OF THE PROPERTIES OF MOIST AIR

2.1 INTRODUCTION 93

2.2 CLASSIFICATION OF SENSORS 93

2.3 TERMS RELATING TO HUMIDITY MEASUREMENT 93

2.4 CONSIDERATIONS IN THE SELECTION OF HUMIDITY INSTRUMENTS 94

2.5 GENERAL INSTRUMENT CHARACTERISTICS 96

2.6 RELATIVE HUMIDITY HYGROMETERS 97
2.6.1 Electric and Electronic Hygrometers 98
2.6.2 Mechanical Hygrometers (Dimensional Change) 102
2.6.3 Electrolytic Hygrometers 104
2.6.4 Piezoelectric Sorption (Quartz Crystal) 104
2.6.5 Color Change Hygrometers (Salts) 104

2.7 ABSOLUTE HUMIDITY HYGROMETERS 105
2.7.1 Chilled-Mirror Dew-Point Hygrometer 105
2.7.2 Salt-Phase Heated Hygrometer (Lithium Chloride) 108
2.7.3 Wylie Salt Crystal (Single Ionic Crystal) 108
2.7.4 Adiabatic Expansion 108
2.7.5 Coulometric Hygrometer 109
2.7.6 Pneumatic Bridge Hygrometer 110
2.7.7 Surface Acoustic Wave Device (SAW) 110
2.7.8 Hygrometers Based on Measuring Speed of Sound and Temperature (Sonic) 110
2.7.9 Radiation Absorption (Infrared/Lyman-alpha) 111
2.7.10 Chemical Reactant 111
2.7.11 Wet- and Dry-Bulb Psychrometer 111
2.7.12 Adiabatic Saturation 111
2.7.13 Thermal Conductivity 112

2.8 HYGROMETER CALIBRATION 112

2.9 CLASSIFICATION OF CALIBRATION STANDARDS 113
2.9.1 Gravimetric Hygrometer (NIST) 113
2.9.2 Precision Humidity Generators 114
2.9.3 Secondary Standards 115
2.9.4 Working Standards 117

2.10 CONCLUSION 117

REFERENCES 117

CHAPTER 3: DETAILED DISCUSSION OF THE DRY- AND WET-BULB PSYCHROMETER

3.1 INTRODUCTION 121

3.2 COMMON FACTORS REGARDING PSYCHROMETERS 121

3.3 SLING PSYCHROMETER 123

3.4 ASPIRATION PSYCHROMETERS 124

3.5 THERMOCOUPLE PSYCHROMETERS 125

3.6 DRY- AND WET-BULB THERMOMETERS IN DUCTS 126

3.7 THEORY OF THE NONASPIRATED PSYCHROMETER 127

3.8 FORMULAS FOR CALCULATING RELATIVE HUMIDITY 127

3.9 USE OF PSYCHROMETERS AT LOW AND HIGH TEMPERATURES 129

3.9.1 Measurements at Temperatures Above 60°C 129

3.9.2 Frost Zone Measurements 129

3.10 NEED FOR IMPROVED PSYCHROMETER 129

3.11 CONCLUSION 130

REFERENCES 131

CHAPTER 4: APPLICATIONS OF PSYCHROMETRIC PRINCIPLES

4.1 INTRODUCTION 133

4.2 THE BUILDING INDUSTRY 135

4.2.1 Air Conditioning and Ventilation of Buildings 136

4.2.2 Humidification of Buildings 140

4.2.3 Sound Absorption in Acoustical Engineering Problems 141

4.2.4 Moisture and Roofing 141

4.2.5 Condensation in Buildings 141

4.2.6 Moisture in Concrete 142

4.3 THE PAPER INDUSTRY 142

4.4 INDUSTRIAL DRYING SYSTEMS 143

4.5 DRYING AND STORAGE OF GRAIN 145

4.6 FOOD PRESERVATION 147

4.7 FOG SPRAY HUMIDIFICATION IN COLD STORAGE 148

4.8 METEOROLOGY 148

4.8.1 Measurement Methods 148

4.8.2 Moisture and Hurricanes 149

4.8.3 Greenhouse Effect and the Weather 150

4.9 FOG 151

4.10 SURVIVAL SHELTERS 152

4.11 MISCELLANEOUS APPLICATIONS 153

4.11.1 Comfort and Health 153

4.11.2 Odors 153

4.11.3 Air-to-Air Heat Recovery Equipment 153

4.11.4 Humidification and Dehumidification 155
INTRODUCTION

Moist-air properties in the atmosphere display periodic variations of a diurnal and seasonal nature associated with the rotation of the globe and the revolution of the earth in an elliptical orbit about the sun. Changes in atmospheric moist-air properties are also due to movements of air masses from different regions, such as the polar or tropical regions. These bodies of air bring with them characteristic meteorological properties and activities, depending upon the conditions over the source regions and over the various geographical areas traversed by the air masses. These bodies of air, constantly moving about, are capable of manifesting a wide range of activities. They can gain or lose heat, take up or yield water vapor, become clear or cloudy, flow past with light breezes or gales, give balmy weather or light to heavy rains and snows, sleet, and perhaps thunderstorms, tornadoes, or hurricanes, unleashing torrential precipitation attended by strong winds.

The degree of moisture in the air has a profound effect on our man-made structures. Moist air changes its properties or loses or gains water as it moves in and out of these structures and often causes damage. It plays a principal role, not only in the heating and cooling processes of these structures and the resulting comfort of the occupants, but in building insulation, roofing properties, and the stability, deformation, and fire-resistance of the building materials. The degree of moisture in the air has an effect on sound absorption, odor level, and ventilation.

Industry and agriculture, by necessity, must control the humidity of the air to fairly close limits. The paper industry, space industry, clothing manufacturing, hospital operating rooms, storage of fruit and grain, and growing of animals and plants are but a few examples.

An understanding of the principles involved is essential. To this end, presentation of the relationships involved, instrumentation, and some of the techniques used by the Weather Bureau, industry, and agriculture are given in this publication. Many of the facts given have been known for years. The theory of psychrometry was well developed by 1945 when Goff and Granch prepared their tables. Since then, however, with the rapid growth of industry and universities, many new techniques for controlling, making use of, and measuring the properties of dry and moist air have developed rapidly. Yet most of the knowledge available is widely spread throughout literature, and sometimes the information cannot be found easily.

The underlying purpose in preparing this publication was to bring together, under one cover, most of the available knowledge so it can be of use to laboratory investigators, meteorologists, design engineers, professors, students, and technicians.
INTRODUCTION

Moist-air properties in the atmosphere display periodic variations of a diurnal and seasonal nature associated with the rotation of the globe and the revolution of the earth in an elliptical orbit about the sun. Changes in atmospheric moist-air properties are also due to movements of air masses from different regions, such as the polar or tropical regions. These bodies of air bring with them characteristic meteorological properties and activities, depending upon the conditions over the source regions and over the various geographical areas traversed by the air masses. These bodies of air, constantly moving about, are capable of manifesting a wide range of activities. They can gain or lose heat, take up or yield water vapor, become clear or cloudy, flow past with light breezes or gales, give balmy weather or light to heavy rains and snows, sleet, and perhaps thunderstorms, tornadoes, or hurricanes, unleashing torrential precipitation attended by strong winds.

The degree of moisture in the air has a profound effect on our man-made structures. Moist air changes its properties or loses or gains water as it moves in and out of these structures and often causes damage. It plays a principal role, not only in the heating and cooling processes of these structures and the resulting comfort of the occupants, but in building insulation, roofing properties, and the stability, deformation, and fire-resistance of the building materials. The degree of moisture in the air has an effect on sound absorption, odor level, and ventilation.

Industry and agriculture, by necessity, must control the humidity of the air to fairly close limits. The paper industry, space industry, clothing manufacturing, hospital operating rooms, storage of fruit and grain, and growing of animals and plants are but a few examples.

An understanding of the principles involved is essential. To this end, presentation of the relationships involved, instrumentation, and some of the techniques used by the Weather Bureau, industry, and agriculture are given in this publication. Many of the facts given have been known for years. The theory of psychrometry was well developed by 1945 when Goff and Gratch prepared their tables. Since then, however, with the rapid growth of industry and universities, many new techniques for controlling, making use of, and measuring the properties of dry and moist air have developed rapidly. Yet most of the knowledge available is widely spread throughout literature, and sometimes the information cannot be found easily.

The underlying purpose in preparing this publication was to bring together, under one cover, most of the available knowledge so it can be of use to laboratory investigators, meteorologists, design engineers, professors, students, and technicians.
CHAPTER 1

THERMODYNAMIC PROPERTIES OF DRY AND MOIST AIR AND WATER
1.1 INTRODUCTION

The primary source of data regarding thermodynamic properties of moist air for use in air-conditioning and meteorology practice has been the reports formulated by Goff and Gratch\(^6\) in the 1940s. Since then other papers have been published, most recently those of Hyland and Wexler,\(^1\) who have re-examined all the available thermodynamic data for water and moist air. The first part of this ASHRAE-funded research project reassessed all the fundamental data and prior methods of analysis that led to the development of new tables in the SI system of units for the specific volume, specific enthalpy, and specific entropy of the solid, liquid, and vapor phases of saturated water in the temperature range of \(-100^\circ\text{C}\) to \(200^\circ\text{C}\). The second part obtained a density series virial equation of state for dry air, which, combined with part one, produced tables of the specific volume, specific enthalpy, and specific entropy of saturated moist air in the range of \(-100^\circ\text{C}\) to \(99^\circ\text{C}\). The results of the project represent the best achievable thermodynamic property correlations available today. This chapter provides the principal results of the Hyland and Wexler reports, including complete tabulations of thermodynamic properties of moist air. This publication intentionally leaves much of the theory to the referenced sources and provides the user with the fundamental working equations needed for psychrometric computations.

Other psychrometric relationships and moist air properties not directly related to the Hyland and Wexler formulations are also described in this chapter. For more rapid calculation of various moist air properties, perfect gas relationships can be used with only a slight loss of accuracy. The equations are given here in dual units. Furthermore, detailed procedures are outlined in Section 1.8 citing these equations for calculating psychrometric properties either by hand or by computer.

Also included in this chapter are the newly formulated psychrometric charts in SI units. These seven charts, which incorporate the methods of Hyland Wexler\(^\text{1}\) as well as those of Goff and Gratch,\(^\text{4}\) are constructed for use at different pressures and temperatures.

To judge the accuracy of available software, tables are included in both SI and I-P units (see Section 1.10) based on the calculated values of the Hyland and Wexler formulations.

Additional references for information on topics cited in this chapter are listed in Sections 1.11, 1.12, and 1.13.

1.2 THE COMPOSITION OF DRY AND MOIST AIR

1.2.1 Dry Air Constituents

Atmospheric air contains a large number of gaseous constituents, as well as water vapor and miscellaneous contaminants (e.g., smoke, pollen, and gaseous pollutants not normally present in free air far removed from the sources of pollution). By definition, dry air exists when all water vapor and contaminants have been removed from atmospheric air. Extensive measurements have shown that the composition of dry air is relatively constant but that small variations in the
amounts of individual components do occur with time, geographical location, and altitude. Further information is given by Harrison. In order to determine the thermodynamic properties of dry air, its composition must, of course, be standardized. Table 1, listing the components of dry air and their relative amounts, is an accepted standard and represents the averages for a wide range of conditions. Nitrogen, oxygen, argon, and carbon dioxide obviously are the major components. The amounts of the first three are very stable, while the abundance of carbon dioxide may show considerable local variations relative to its average value due to the condition of vegetation, weather conditions, ocean surface water temperature, pollution, etc. Fortunately, the overall properties of the dry air mixture may generally be determined without concern for carbon dioxide variability, since the average abundance of carbon dioxide is so small.

Moist air, the basic medium in air-conditioning practice, is defined as a binary, or two-component, mixture of dry air and water vapor. Dry air is treated in this chapter as a single entity whose composition is defined in Table 1. The amount of water vapor in moist air is variable, ranging from nearly zero (dry air) to a maximum (typically from 0.0000563 to 0.000907 kg of water vapor per kg of dry air under surface atmospheric conditions) depending upon temperature and pressure.

Table 1: Normal Composition of Clean, Dry, Atmospheric Air Near Sea Level

<table>
<thead>
<tr>
<th>Constituent Gas and Formula</th>
<th>Content (% by volume)</th>
<th>Content Variable Molecular Weight on Basis of Carbon-12 Isotope Scale for which C12 (C-12) = 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen (N2)</td>
<td>78.064</td>
<td>280.184</td>
</tr>
<tr>
<td>Oxygen (O2)</td>
<td>20.9476</td>
<td>31.9988</td>
</tr>
<tr>
<td>Argon (Ar)</td>
<td>0.934</td>
<td>39.943</td>
</tr>
<tr>
<td>Carbon dioxide (CO2)</td>
<td>0.0474</td>
<td>44.0095</td>
</tr>
<tr>
<td>Neon (Ne)</td>
<td>0.00185</td>
<td>20.183</td>
</tr>
<tr>
<td>Helium (He)</td>
<td>0.000024</td>
<td>4.0026</td>
</tr>
<tr>
<td>Krypton (Kr)</td>
<td>0.000114</td>
<td>83.80</td>
</tr>
<tr>
<td>Xenon (Xe)</td>
<td>0.0000087</td>
<td>131.30</td>
</tr>
<tr>
<td>Hydrogen (H2)</td>
<td>0.00002</td>
<td>2.0159</td>
</tr>
<tr>
<td>Methane (CH4)</td>
<td>0.00015</td>
<td>16.0430</td>
</tr>
<tr>
<td>Nitrous oxide (N2O)</td>
<td>0.00005</td>
<td>44.0128</td>
</tr>
<tr>
<td>Ozone (O3)</td>
<td>summer: 0 to 0.00007</td>
<td>47.982</td>
</tr>
<tr>
<td></td>
<td>winter: 0 to 0.00002</td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0 to 0.0001</td>
<td>64.0828</td>
</tr>
<tr>
<td>Sulfur dioxide (SO3)</td>
<td>0 to 0.00002</td>
<td>64.0828</td>
</tr>
<tr>
<td>Ammonia (NH3)</td>
<td>0 to trace</td>
<td>17.0061</td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0 to trace</td>
<td>28.0105</td>
</tr>
<tr>
<td>Radon (Rn)</td>
<td>0 to 0.00001</td>
<td>222,000</td>
</tr>
<tr>
<td></td>
<td>6 × 10⁻13</td>
<td></td>
</tr>
</tbody>
</table>

* The contents of the gases marked with an asterisk may undergo significant variations from time to time or from place to place relative to the normal indicated for these gases.

The water vapor content of moist air is variable, ranging from nearly zero to a maximum (typically from 0.0000563 to 0.000907 kg of water vapor per kg of dry air under surface atmospheric conditions) depending upon temperature and pressure.

1.2.3 Molecular Weight and Gas Constants

1.2.3.1 Carbon-12 Scale of Atomic and Molecular Weights

On the basis of the Carbon-12 scale, the gram atomic or molecular (whichever is appropriate) weight of a pure substance is defined as the mass in grams of that substance which has the same number of elementary particles (atoms or molecules) as the number of atoms contained in exactly 12 grams of pure Carbon-12 isotope. The pound atomic or molecular weight of a substance has this same definition except that the masses are expressed in pounds. Thus, the two atomic or molecular weights of a given substance are numerically equal but refer to different mass units. In this chapter, both the SI and English systems of units will be considered. (See Section 5.2.3 of Chapter 5.) In the SI system, the kilogram is the basic unit of mass; in the English Pound system of units, it is the pound-mass. The mass of a substance equal to its molecular weight is called one mole. (See Section 5.2.2 of Chapter 5 for detailed definition.) Again, both gram moles and pound moles are used, depending upon the unit of mass chosen. Prior to the adoption of the Carbon-12 Scale, the natural oxygen scale was used. The datum for this scale was an atomic weight of exactly 16 for natural oxygen or a molecular weight of 32. On the basis of the new Carbon-12 Scale, the molecular weight of oxygen is 31.9988. Thus, for most practical calculations, the difference between the scales is negligible.

1.2.3.2 Apparent Molecular Weight of Dry Air

Dry air has been defined as a mixture of several gaseous components; as such, the definition for molecular weight given previously does not apply. An apparent molecular weight can be defined as the weighted average molecular weight of all components, using the individual molecular weights and volume percentages given in Table 1. This calculation results in the value of 28.9645 for the apparent molecular weight of dry air on the basis of the Carbon-12 Scale.
amounts of individual components do occur with time, geographical location, and altitude. Further information is given by Harrison. In order to determine the thermodynamic properties of dry air, its composition must, of course, be standardized. Table 1, listing the components of dry air and their relative amounts, is an accepted standard and represents the averages for a wide range of conditions. Nitrogen, oxygen, argon, and carbon dioxide obviously are the major components. The amounts of the first three are very stable, while the abundance of carbon dioxide may show considerable local variations relative to its average value due to the condition of vegetation, weather conditions, ocean surface water temperature, pollution, etc. Fortunately, the overall properties of the dry air mixture may generally be determined without concern for carbon dioxide variability, since the average abundance of carbon dioxide is so small.

Moist air, the basic medium in air-conditioning practice, is defined as a binary, or two-component, mixture of dry air and water vapor. Dry air is treated in this chapter as a single entity whose composition is defined in Table 1. The amount of water vapor in moist air is variable, ranging from nearly zero (dry air) to a maximum (typically from 0.0000563 to 0.000907 kg of water vapor per kg of dry air under surface atmospheric conditions) depending upon temperature and pressure.

Table 1: Normal Composition of Clean, Dry, Atmospheric Air Near Sea Level

<table>
<thead>
<tr>
<th>Constituent Gas and Formula</th>
<th>Content (% by volume)</th>
<th>Content Variable</th>
<th>Molecular Weight on Basis of Carbon-12 Isotope Scale for which C12 (C-12)=12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen (N₂)</td>
<td>78.084</td>
<td>-</td>
<td>28.0184</td>
</tr>
<tr>
<td>Oxygen (O₂)</td>
<td>20.9476</td>
<td>-</td>
<td>31.988</td>
</tr>
<tr>
<td>Argon (Ar)</td>
<td>0.934</td>
<td>-</td>
<td>39.943</td>
</tr>
<tr>
<td>Carbon dioxide (CO₂)</td>
<td>0.034</td>
<td>*</td>
<td>44.0095</td>
</tr>
<tr>
<td>Neon (Ne)</td>
<td>0.00181</td>
<td>-</td>
<td>20.183</td>
</tr>
<tr>
<td>Helium (He)</td>
<td>0.00023</td>
<td>-</td>
<td>4.0026</td>
</tr>
<tr>
<td>Krypton (Kr)</td>
<td>0.00012</td>
<td>-</td>
<td>83.80</td>
</tr>
<tr>
<td>Xenon (Xe)</td>
<td>0.000021</td>
<td>-</td>
<td>131.30</td>
</tr>
<tr>
<td>Hydrogen (H₂)</td>
<td>0.0005</td>
<td>*</td>
<td>2.0158</td>
</tr>
<tr>
<td>Methane (CH₄)</td>
<td>0.00015</td>
<td>*</td>
<td>16.0430</td>
</tr>
<tr>
<td>Nitrous oxide (N₂O)</td>
<td>0.0005</td>
<td>*</td>
<td>44.0128</td>
</tr>
<tr>
<td>Ozone (O₃)</td>
<td>summer: 0 to 0.00007</td>
<td>*</td>
<td>47.9962</td>
</tr>
<tr>
<td></td>
<td>winter: 0 to 0.00002</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO₂)</td>
<td>0 to 0.00001</td>
<td>-</td>
<td>64.0628</td>
</tr>
<tr>
<td>Nitrogen dioxide (NO₂)</td>
<td>0 to 0.000002</td>
<td>*</td>
<td>46.0355</td>
</tr>
<tr>
<td>Ammonia (NH₃)</td>
<td>0 to trace</td>
<td>*</td>
<td>17.0030</td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0 to trace</td>
<td>*</td>
<td>28.0105</td>
</tr>
<tr>
<td>Isocyanide (N₂O₃)</td>
<td>0 to 0.000001</td>
<td>-</td>
<td>253.0088</td>
</tr>
<tr>
<td>Radon (Rn)</td>
<td>6. × 10⁻¹³</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

1.2.3 Molecular Weight and Gas Constants

1.2.3.1 Carbon-12 Scale of Atomic and Molecular Weights

On the basis of the Carbon-12 scale, the gram atomic or molecular (whichever is appropriate) weight of a pure substance is defined as the mass in grams of that substance which has the same number of elementary particles (atoms or molecules) as the number of atoms contained in exactly 12 grams of pure Carbon-12 isotope. The pound atomic or molecular weight of a substance has this same definition except that the masses are expressed in pounds. Thus, the two atomic or molecular weights of a given substance are numerically equal but refer to different mass units. In this chapter, both the SI and I-P systems of units will be considered. (See Section 5.3.2 of Chapter 5.) In the SI system, the kilogram is the basic unit of mass; in the Inch-Pound system of units, it is the pound-mass. The mass of a substance equal to its molecular weight is called one mole. (See Section 5.3.2 of Chapter 5 for detailed definition.) Again, both gram moles and pound moles are used, depending upon the unit of mass chosen. Prior to the adoption of the Carbon-12 Scale, the natural oxygen scale was used. The datum for this scale was an atomic weight of exactly 16 for natural oxygen or a molecular weight of 32. On the basis of the new Carbon-12 Scale, the molecular weight of oxygen is 31.9988. Thus, for most practical calculations, the difference between the scales is negligible.

1.2.3.2 Apparent Molecular Weight of Dry Air

Dry air has been defined as a mixture of several gaseous components; as such, the definition for molecular weight given previously does not apply. An apparent molecular weight can be defined as the weighted average molecular weight of all components, using the individual molecular weights and volume percentages given in Table 1. This calculation results in the value of 28.9645 for the apparent molecular weight of dry air on the basis of the Carbon-12 Scale.

4. Psychrometrics—Theory and Practice

5. Psychrometrics—Theory and Practice