APPLICATION GUIDE FOR
ABSORPTION COOLING/REFRIGERATION
USING RECOVERED HEAT
APPLICATION GUIDE FOR ABSORPTION COOLING/REFRIGERATION USING RECOVERED HEAT

Chad B. Dorgan
Steven P. Leight
Charles E. Dorgan

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
APPLICATION GUIDE FOR ABSORPTION COOLING/REFRIGERATION USING RECOVERED HEAT

Chad B. Dorgan
Steven P. Leight
Charles E. Dorgan

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
Acknowledgments

This Guide was developed through a cooperative effort of Dorgan Associates, Inc., and absorption machine experts who reviewed various drafts and provided both suggestions and input data. The input of the ASHRAE Project Monitoring Subcommittee, chaired by Dr. Horacio Perez-Blanco (Penn State University) and members Steve Petz (Columbia Gas Service Corporation), Reinhard Radermacher (University of Maryland), Uwe Rockenfeller (Rocky Research Corporation), and Bill Ryan (Gas Research Institute) was instrumental in achieving a successful Guide.

Over 20 people reviewed the draft versions. The following deserve special thanks for their detailed comments, suggestions, and supplemental information: Mike Byars (The Trane Company), Dan Erdmann (Affiliated Engineers, Inc.), Jim Furlong (York International Corporation), Paul Guevara (The Trane Company), Asama Ibrahim (University of Rhode Island), Jay Kohler (York International Corporation), Frank Lampere (Henry Vogt Machine Company), Werner Malewski (Deutsche Babcock-Borsig), Skip McCullough (Baltimore Aircoil Company), Kevin McGahey (American Gas Cooling Center), Mike Pawelski (The Trane Company), Bill Pizak (The Trane Company), Jim Porter (The Trane Company), Doug Rector (United Technology Carrier), Bob Reimann (United Technology Carrier), Jim Rozanski (Cain Industries), Jim Shepherd (Lewis Energy Systems), Walter Smith, Jr. (Energy Technology Services International), and George Vicatos (University of Cape Town).

Dorgan Associates’ staff members who deserve recognition for their contributions include Marion McGavock, technical writer, whose input and assistance were invaluable in accomplishing changes to graphics and for maintaining uniformity throughout the Guide. Anthony Eggert, Ryan Schmid, Mike Armstrong, and Steve Parsons assisted with research and development of illustrations and calculations. Thanks to Joan Dorgan for cheerfully assisting in material preparation and typing. A special thanks to Marisue Quigley for an outstanding job of work processing, proofreading, and final editing and formatting.
Acknowledgments

This Guide was developed through a cooperative effort of Dorgan Associates, Inc., and absorption machine experts who reviewed various drafts and provided both suggestions and input data. The input of the ASHRAE Project Monitoring Subcommittee, chaired by Dr. Horacio Perez-Blanco (Penn State University) and members Steve Petty (Columbia Gas Service Corporation), Reinhard Radermacher (University of Maryland), Uwe Rockenfeller (Rocky Research Corporation), and Bill Ryan (Gas Research Institute) was instrumental in achieving a successful Guide.

Over 20 people reviewed the draft versions. The following deserve special thanks for their detailed comments, suggestions, and supplemental information: Mike Byars (The Trane Company), Dan Erdmann (Affiliated Engineers, Inc.), Jim Furlong (York International Corporation), Paul Guevara (The Trane Company), Asama Ibrahum (University of Rhode Island), Jay Kohler (York International Corporation), Frank Lampshire (Henry Vogt Machine Company), Werner Malewski (Deutsche Babcock-Borsig), Skip McCullough (Baltimore Aircoil Company), Kevin McGahey (American Gas Cooling Center), Mike Pawelski (The Trane Company), Bill Pizak (The Trane Company), Jim Porter (The Trane Company), Doug Rector (United Technology Carrier), Bob Reiman (United Technology Carrier), Jim Rozanski (Cain Industries), Jim Shepherd (Lewis Energy Systems), Walter Smith, Jr. (Energy Technology Services International), and George Vicatos (University of Cape Town).

Dorgan Associates' staff members who deserve recognition for their contributions include Marion McGavock, technical writer, whose input and assistance were invaluable in accomplishing changes to graphics and for maintaining uniformity throughout the Guide. Anthony Eggert, Ryan Schmid, Mike Armstrong, and Steve Parsons assisted with research and development of illustrations and calculations. Thanks to Joan Dorgan for cheerfully assisting in material preparation and typing. A special thanks to Marise Quigley for an outstanding job of work processing, proofreading, and final editing and formatting.
About the Authors

Chad B. Dorgan, P.E., is a senior engineer and Charles E. Dorgan, Ph.D., P.E., is president of Dorgan Associates, Inc., Madison, Wisconsin. At the time this project was conducted, Steven P. Leight was with Dorgan Associates.

Contents

CHAPTER 1 — INTRODUCTION

1.1 Background ... 1

1.2 Benefits of Absorption Systems 2

1.3 Absorption System Applications 3

1.3.1 Heat Recovered from a Cogeneration System 3

1.3.2 Heat Recovered from an Industrial Process 3

1.4 Basic Terminology ... 5

1.4.1 Effects ... 5

1.4.2 Stages ... 5

1.4.3 Coefficient of Performance 6

1.5 Types of Indirect-Fired Absorption Systems 7

1.6 Reference Sources .. 8

1.6.1 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. 8

1.6.2 Gas Research Institute 9

1.6.3 American Gas Cooling Center 9

1.6.4 American Gas Association 9

1.6.5 Absorption Machine Vendors 9
About the Authors

Chad B. Dorgan, P.E., is a senior engineer and Charles E. Dorgan, Ph.D., P.E., is president of Dorgan Associates, Inc., Madison, Wisconsin. At the time this project was conducted, Steven P. Leight was with Dorgan Associates.

Contents

CHAPTER 1 — INTRODUCTION

1.1 Background ... 1
1.2 Benefits of Absorption Systems 2
1.3 Absorption System Applications 3
 1.3.1 Heat Recovered from a Cogeneration System 3
 1.3.2 Heat Recovered from an Industrial Process 3
1.4 Basic Terminology ... 5
 1.4.1 Effects ... 6
 1.4.2 Stages .. 5
 1.4.3 Coefficient of Performance ... 6
1.5 Types of Indirect-Fired Absorption Systems 7
1.6 Reference Sources ... 8
 1.6.1 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. .. 8
 1.6.2 Gas Research Institute ... 9
 1.6.3 American Gas Cooling Center 9
 1.6.4 American Gas Association .. 9
 1.6.5 Absorption Machine Vendors 9
CHAPTER 5 — THE ABSORPTION PROCESS

5.1 The Vapor-Compression Cycle ... 47
5.2 The Absorption Cycle ... 49
5.3 Absorbent-Refrigerant Solutions .. 51
 5.3.1 Types of Absorption Systems 52
 5.3.2 Solution Concentration Levels 52
 5.3.3 Other Solutions .. 53
5.4 Chapter Listing of Different Systems 53
 5.4.1 Lithium Bromide-Water System 53
 5.4.2 Aqueous Ammonia System ... 53

CHAPTER 6 — LITHIUM BROMIDE-WATER ABSORPTION CYCLE

6.1 PTX Equilibrium Chart .. 55
 6.1.1 Solution Temperature .. 56
 6.1.2 Solution Concentration ... 56
 6.1.3 Refrigerant Temperature ... 57
 6.1.4 Refrigerant Vapor Pressure .. 57
6.2 Single-Effect System ... 57
 6.2.1 Single-Effect Absorption Process 57
 6.2.2 Single-Effect Absorption Machine Configuration 60
6.3 Double-Effect System ... 61
 6.3.1 Double-Effect Absorption Process 62
 6.3.2 Double-Effect Machine Configuration 66
6.4 Comparison of Single- and Double-Effect Systems 66
6.5 Individual Components ... 69
 6.5.1 Pumps .. 69
 6.5.2 Absorber Section ... 69
 6.5.3 Solution Heat Exchanger ... 70
 6.5.4 Expansion Device .. 71
 6.5.5 Evaporator ... 72
 6.5.6 Purge System .. 72
 6.5.7 Cooling Water System ... 73
 6.5.8 Controls ... 73
 6.5.8.1 Crystallization .. 74
4.2.1 Shell-and-Tube Heat Exchangers (Liquid or Steam to Hot Water) 39
4.2.2 Exhaust Gas Boilers (exhaust gas to steam or hot water) 40
4.2.3 Steam Separators ... 41
4.3 Cogeneration .. 42
 4.3.1 Gas Turbines ... 42
 4.3.2 Steam Turbines ... 43
 4.3.3 Reciprocating Engines ... 43

CHAPTER 5 — THE ABSORPTION PROCESS

5.1 The Vapor-Compression Cycle ... 47
5.2 The Absorption Cycle ... 49
5.3 Absorbent-Refrigerant Solutions .. 51
 5.3.1 Types of Absorption Systems .. 52
 5.3.2 Solution Concentration Levels .. 52
 5.3.3 Other Solutions ... 53
5.4 Chapter Listing of Different Systems ... 53
 5.4.1 Lithium Bromide-Water System ... 53
 5.4.2 Aqueous Ammonia System ... 53

CHAPTER 6 — LITHIUM BROMIDE-WATER ABSORPTION CYCLE

6.1 PTX Equilibrium Chart ... 55

6.1.1 Solution Temperature .. 56
6.1.2 Solution Concentration .. 56
6.1.3 Refrigerant Temperature ... 57
6.1.4 Refrigerant Vapor Pressure ... 57
6.2 Single-Effect System ... 57
 6.2.1 Single-Effect Absorption Process ... 57
 6.2.2 Single-Effect Absorption Machine Configuration 60
6.3 Double-Effect System .. 61
 6.3.1 Double-Effect Absorption Process ... 62
 6.3.2 Double-Effect Machine Configuration 66
6.4 Comparison of Single- and Double-Effect Systems 66
6.5 Individual Components .. 69
 6.5.1 Pumps .. 69
 6.5.2 Absorber Section .. 69
 6.5.3 Solution Heat Exchanger ... 70
 6.5.4 Expansion Device ... 71
 6.5.5 Evaporator ... 72
 6.5.6 Purge System .. 72
 6.5.7 Cooling Water System ... 73
 6.5.8 Controls ... 73
 6.5.8.1 Crystallization .. 74
CHAPTER 7 — AQUEOUS AMMONIA ABSORPTION CYCLE

7.1 Graphical Representation of AAR Cycle .. 83
7.2 One-Stage System ... 84
7.3 Multistage Systems .. 86
7.4 Individual Mechanical Components ... 88
7.4.1 Pumps ... 88
7.4.2 Absorber Section .. 88
7.4.3 Evaporator Section .. 89
7.4.4 Solution Heat Exchanger .. 89
7.4.5 Generator/Rectifier .. 90
7.4.6 Ammonia Condenser .. 91
7.4.7 Expansion Device ... 91

7.5 Chemical Additives ... 92

CHAPTER 8 — MATCHING HEAT SOURCES, COOLING LOAD CAPABILITY AND HEAT REJECTION WITH AN ABSORPTION MACHINE

8.1 Introduction ... 95
8.2 Determine Cooling Requirements and Heat Source 96
8.3 Select Type of Absorption Machine to Use 96
8.4 Calculate Recoverable Heat ... 97
8.4.1 Gas Streams ... 97
8.4.2 Liquid Streams ... 99
8.4.3 Engine Jackets ... 99
8.4.4 Backpressure Steam Turbine ... 100
8.4.5 Mass Flow of Recovered Heat .. 100
8.5 Determine the Cooling Output Attainable 101
8.6 Size the Absorption Machine .. 102
8.7 Calculate Heat Rejection Requirements 102
8.8 Calculate Electric Power Requirements 103
8.9 Resize Machine with Other Options .. 103
8.10 Determine Part-Load and Nonconcurrent Load Operation 103
Chapter 1

Introduction

1.1 BACKGROUND

ASHRAE commissioned this application guide in response to the need for a comprehensive reference manual for the application of indirect-fired absorption machines. Indirect fired is defined as an absorption machine that uses heat recovered from another process or heat cycle machine. Direct-fired absorption machines are not covered in the guide. This document will help engineers and owners to

- become familiar with the requirements of an absorption system,
- evaluate indirect-fired absorption machines for specific applications,
- evaluate the potential of available recovered heat sources, and
- select the most economical system.

The purpose of this guide is to provide the reader with information on the successful application of absorption machines. The actual design of an absorption system is covered in detail in other publications, which are listed in the bibliography of this guide. However, common areas of concern in the design of absorption machines are briefly discussed in the guide.

The application of absorption for the purpose of cooling has been a viable technology for more than a century. This guide contains the information required to properly incorporate absorption technology into a wide range of applications, including commercial space cooling, central plant cooling, and industrial applications where recoverable heat is available.

Absorption systems can provide an economical use for recovered heat energy. This guide assumes that a heat source is available, economically appropriate, and cannot be eliminated through modification of the process or power cycle. There is no higher economic use of the potential recovered heat than whenever there is a cooling or refrigeration requirement that can be satisfied with the recovered heat.

The guide is structured to provide a logical progression from vapor-compression technology to absorption technology. It is assumed that the reader of this guide understands the basic principles of refrigeration and the fundamentals of vapor-compression systems. The guide introduces the concepts of absorption cooling using the terminology of vapor-
CHAPTER 1
Introduction

1.1 BACKGROUND

ASHRAE commissioned this application guide in response to the need for a comprehensive reference manual for the application of indirect-fired absorption machines. Indirect fired is defined as an absorption machine that uses heat recovered from another process or heat cycle machine. Direct-fired absorption machines are not covered in the guide. This document will help engineers and owners to

- become familiar with the requirements of an absorption system,
- evaluate indirect-fired absorption machines for specific applications,
- evaluate the potential of available recovered heat sources, and
- select the most economical system.

The purpose of this guide is to provide the reader with information on the successful application of absorption machines. The actual design of an absorption system is covered in detail in other publications, which are listed in the bibliography of this guide. However, common areas of concern in the design of absorption machines are briefly discussed in the guide.

The application of absorption for the purpose of cooling has been a viable technology for more than a century. This guide contains the information required to properly incorporate absorption technology into a wide range of applications, including commercial space cooling, central plant cooling, and industrial applications where recoverable heat is available.

Absorption systems can provide an economical use for recovered heat energy. This guide assumes that a heat source is available, economically appropriate, and cannot be eliminated through modification of the process or power cycle. There is no higher economic use of the potential recovered heat than whenever there is a cooling or refrigeration requirement that can be satisfied with the recovered heat.

The guide is structured to provide a logical progression from vapor-compression technology to absorption technology. It is assumed that the reader of this guide understands the basic principles of refrigeration and the fundamentals of vapor-compression systems. The guide introduces the concepts of absorption cooling using the terminology of vapor-
1.2 BENEFITS OF ABSORPTION SYSTEMS

The first absorption machine was developed in the mid-nineteenth century by a Frenchman, Ferdinand Carre. Since this first machine, the popularity of absorption systems has risen and fallen due to economic conditions and technology breakthroughs from competing technologies. The benefits of absorption systems have remained constant and include the following:

- absorption systems have lower electrical needs compared to vapor-compression systems;
- absorption units are quiet and vibration free;
- recovered heat can be utilized to power the absorption refrigeration cycle;
- absorption units pose no threat to global environmental ozone depletion and may have less impact on global warming than most other options, and
- absorption units are economically attractive when fuel costs are substantially less than electric costs (typically, if fuel cost is 12% to 20% of electrical cost) (Smith 1994; Furlong 1994).

1.3 ABSORPTION SYSTEM APPLICATIONS

A refrigeration system uses an energy input to produce a cooling effect. In vapor-compression systems, the energy input is mechanical work, usually an electric motor. In absorption systems, the energy input is heat.

If a facility or process has the potential to recover heat, an absorption system can use the recovered heat to generate cooling. Typically, heat for absorption cooling is recovered from a process and used in process cooling or to reduce the temperature of the surrounding environment by use of an HVAC system. Figure 1-1 shows a variety of applications for absorption machines.

1.3.1 Heat Recovered from a Cogeneration System

Applying indirect-fired absorption machines with cogeneration systems is currently the most common approach. Heat recovered from the exhaust gas stream and the engine coolant system is used to power the absorption machine. When the heat from the cogeneration plant is used to power an absorption machine, this not only meets the cooling load but also reduces the peak electric demand on the system.

The cooling load on the absorption machine will vary depending on the local requirements. Several common applications include:

- cooling occupied spaces (HVAC system),
- cooling inlet air for gas turbines (which increases gas turbine capacity and efficiency),
- providing refrigeration to a food processing plant or for ice production, and
- cooling an industrial process.

1.3.2 Heat Recovered from an Industrial Process

The application of absorption systems has typically been economical for many industrial facilities with both large heat rejection and cooling requirements. The heat source and cooling load in an industrial facility vary, depending on the processes. Examples of possible heat sources include:

- exhaust gas from a drying process, such as in a paper plant;
- hot water produced in a wastewater treatment facility;
- gas vapor produced in an oil refinery from a distillation process;
- low-pressure steam from a backpressure steam turbine; and
- incinerator exhaust/coolant water.
APPLICATION GUIDE FOR ABSORPTION COOLING/REFRIGERATION USING RECOVERED HEAT

1.2 BENEFITS OF ABSORPTION SYSTEMS

The first absorption machine was developed in the mid-nineteenth century by a Frenchman, Ferdinand Carre. Since this first machine, the popularity of absorption systems has risen and fallen due to economic conditions and technology breakthroughs from competing technologies. The benefits of absorption systems have remained constant and include the following:

- absorption systems have lower electrical needs compared to vapor-compression systems;
- absorption units are quiet and vibration free;
- recovered heat can be utilized to power the absorption refrigeration cycle;
- absorption units pose no threat to global environmental ozone depletion and may have less impact on global warming than most other options, and
- absorption units are economically attractive when fuel costs are substantially less than electric costs (typically, if fuel cost is 12% to 20% of electrical cost) (Smith 1994; Furlong 1994).

1.3 ABSORPTION SYSTEM APPLICATIONS

A refrigeration system uses an energy input to produce a cooling effect. In vapor-compression systems, the energy input is mechanical work, usually an electric motor. In absorption systems, the energy input is heat.

If a facility or process has the potential to recover heat, an absorption system can use the recovered heat to generate cooling. Typically, heat for absorption cooling is recovered from a process and used in process cooling or to reduce the temperature of the surrounding environment by use of an HVAC system. Figure 1-1 shows a variety of applications for absorption machines.

1.3.1 Heat Recovered from a Cogeneration System

Applying indirect-fired absorption machines with cogeneration systems is currently the most common approach. Heat recovered from the exhaust gas stream and the engine coolant system is used to power the absorption machine. When the heat from the cogeneration plant is used to power an absorption machine, this not only meets the cooling load but also reduces the peak electric demand on the system.

The cooling load on the absorption machine will vary depending on the local requirements. Several common applications include:

- cooling occupied spaces (HVAC system),
- cooling inlet air for gas turbines (which increases gas turbine capacity and efficiency),
- providing refrigeration to a food processing plant or for ice production, and
- cooling an industrial process.

1.3.2 Heat Recovered from an Industrial Process

The application of absorption systems has typically been economical for many industrial facilities with both large heat rejection and cooling requirements. The heat source and cooling load in an industrial facility vary, depending on the processes. Examples of possible heat sources include:

- exhaust gas from a drying process, such as in a paper plant;
- hot water produced in a wastewater treatment facility;
- gas vapor produced in an oil refinery from a distillation process;
- low-pressure steam from a backpressure steam turbine; and
- incinerator exhaust/coolant water.