Test methods for electrical wires and cables
Canadian Standards Association (CSA) standards are developed through a consensus standards development process approved by the Standards Council of Canada. This process brings together volunteers representing varied viewpoints and interests to achieve consensus and develop a standard. Although CSA administers the process and establishes rules to promote fairness in achieving consensus, it does not independently test, evaluate, or verify the content of standards.

Disclaimer and exclusion of liability
This document is provided without any representations, warranties, or conditions of any kind, express or implied, including, without limitation, implied warranties or conditions concerning this document’s fitness for a particular purpose or use, its merchantability, or its non-infringement of any third party’s intellectual property rights. CSA does not warrant the accuracy, completeness, or currency of any of the information published in this document. CSA makes no representations or warranties regarding this document’s compliance with any applicable statute, rule, or regulation.

IN NO EVENT SHALL CSA, ITS VOLUNTEERS, MEMBERS, SUBSIDIARIES, OR AFFILIATED COMPANIES, OR THEIR EMPLOYEES, DIRECTORS, OR OFFICERS, BE LIABLE FOR ANY DIRECT, INDIRECT, OR INCIDENTAL DAMAGES, INJURY, LOSS, COSTS, OR EXPENSES, HOWEVER CAUSED, INCLUDING BUT NOT LIMITED TO SPECIAL OR CONSEQUENTIAL DAMAGES, LOST REVENUE, BUSINESS INTERRUPTION, LOST OR DAMAGED DATA, OR ANY OTHER COMMERCIAL OR ECONOMIC LOSS, WHETHER BASED IN CONTRACT, TORT (INCLUDING NEGLIGENCE), OR ANY OTHER THEORY OF LIABILITY, ARISING OUT OF OR RESULTING FROM ACCESS TO OR POSSESSION OR USE OF THIS DOCUMENT, EVEN IF CSA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, INJURY, LOSS, COSTS, OR EXPENSES.

In publishing and making this document available, CSA is not undertaking to render professional or other services for or on behalf of any person or entity or to perform any duty owed by any person or entity to another person or entity. The information in this document is directed to those who have the appropriate degree of experience to use and apply its contents, and CSA accepts no responsibility whatsoever arising in any way from any and all use of or reliance on the information contained in this document.

CSA is a private not-for-profit company that publishes voluntary standards and related documents. CSA has no power, nor does it undertake, to enforce compliance with the contents of the standards or other documents it publishes.

Intellectual property rights and ownership
As between CSA and the users of this document (whether it be in printed or electronic form), CSA is the owner, or the authorized licensee, of all works contained herein that are protected by copyright, all trade-marks (except as otherwise noted to the contrary), and all inventions and trade secrets that may be contained in this document, whether or not such inventions and trade secrets are protected by patents and applications for patents. Without limitation, the unauthorized use, modification, copying, or disclosure of this document may violate laws that protect CSA’s and/or others’ intellectual property and may give rise to a right in CSA and/or others to seek legal redress for such use, modification, copying, or disclosure. To the extent permitted by licence or by law, CSA reserves all intellectual property rights in this document.

Patent rights
Attention is drawn to the possibility that some of the elements of this standard may be the subject of patent rights. CSA shall not be held responsible for identifying any or all such patent rights. Users of this standard are expressly advised that determination of the validity of any such patent rights is entirely their own responsibility.

Authorized use of this document
This document is being provided by CSA for informational and non-commercial use only. The user of this document is authorized to do only the following:

If this document is in electronic form:
• load this document onto a computer for the sole purpose of reviewing it;
• search and browse this document; and
• print this document if it is in PDF format.

Limited copies of this document in print or paper form may be distributed only to persons who are authorized by CSA to have such copies, and only if this Legal Notice appears on each such copy.

In addition, users may not and may not permit others to
• alter this document in any way or remove this Legal Notice from the attached standard;
• sell this document without authorization from CSA; or
• make an electronic copy of this document.

If you do not agree with any of the terms and conditions contained in this Legal Notice, you may not load or use this document or make any copies of the contents hereof, and if you do make such copies, you are required to destroy them immediately. Use of this document constitutes your acceptance of the terms and conditions of this Legal Notice.
 CSA Standards Update Service

C22.2 No. 0.3-09
September 2009

Title: Test methods for electrical wires and cables
Pagination: 43 pages (viii preliminary and 35 text), each dated September 2009

Automatic notifications about any updates to this publication are available.

- To register for e-mail notifications, and/or to download any existing updates in PDF, enter the Online Store at www.ShopCSA.ca and click on My Account on the navigation bar.

 The List ID for this document is 2420295.
- To receive printed updates, please complete and return the attached card.

Name __

Organization __

Address __

City __

Province/State __

Country ___________________________ Postal/Zip Code ____________________

E-mail __

I consent to CSA collecting and using the above information to send me updates relating to this publication.

Visit CSA's policy on privacy at www.csagroup.org/legal to find out how we protect your personal information.

C22.2 No. 0.3-09
CSA Standard

C22.2 No. 0.3-09
Test methods for electrical wires and cables

Published in September 2009 by Canadian Standards Association
A not-for-profit private sector organization
5060 Spectrum Way, Suite 100, Mississauga, Ontario, Canada L4W 5N6
1-800-463-6727 • 416-747-4044

Visit our Online Store at www.ShopCSA.ca
Contents

Technical Committee on Wiring Products vi
Subcommittee on Test Methods for Wires and Cables vii

Preface viii

1 Scope 1
1.1 General 1
1.2 Acceptance requirements 1
1.3 Terminology 1

2 Reference publications 1

3 Definitions 2

4 General requirements 2
4.1 General 2
4.2 Deviation from procedures 2

5 Test methods and calculations 2
5.1 Uninsulated conductors 2
5.1.1 General 2
5.1.2 Resistance 3
5.1.3 Physical properties 3
5.1.4 Continuity of metal coating on copper conductor 3
5.1.5 Adherence of metallic coating 4
5.2 Thickness of insulation, jackets, and similar coverings 5
5.2.1 Extruded insulation 5
5.2.2 Taped insulation 5
5.2.3 Mineral insulation — Minimum thickness 5
5.2.4 Thermoplastic lacquered cotton braid or thermoplastic lacquered glass braid insulation 6
5.2.5 Tubing — Minimum internal diameter 6
5.2.6 Jackets and similar coverings 6
5.3 Mechanical properties of extruded insulation, jackets, and similar coverings 6
5.3.1 Tensile properties 6
5.3.2 Accelerated aging 6
5.3.3 Exposure to liquids 6
5.3.4 Recovery 6
5.3.5 Deformation of insulation and jackets 7
5.3.6 Tensile stress 7
5.3.7 Shrinkage 8
5.4 Metallic sheaths — Thickness 8
5.5 Nonmetallic tapes, braids, and servings as coverings 8
5.5.1 Thickness 8
5.5.2 Braid and serving characteristics 9
5.6 Metal tape coverings 9
5.7 Braided shields 9
5.8 Dimensions over cables and components of cables 9
5.8.1 General 9
5.8.2 Overall diameter over sheathed cords 9
5.9 Environmental tests 9

September 2009
5.9.1 Environmental stress cracking of polyethylene 9
5.9.2 Ozone resistance 13
5.9.3 Weather resistance 16
5.10 Flame tests 17
5.10.1 Vertical flame test/FT1 17
5.10.2 Horizontal flame test/FT2 17
5.10.3 Burning particles (dropping) test 17
5.10.4 Vertical flame test — Cables in cable trays/FT4 17
5.10.5 Flame test for portable cables/FT5 17
5.11 Flexibility at any specified temperature 18
5.12 Abnormal low temperature — Impact 18
5.13 Cutting 18
5.13.1 Apparatus 18
5.13.2 Preparation for test 18
5.13.3 Test 18
5.13.4 Average force 18
5.14 Strength and elongation of cable in tension 19
5.14.1 Apparatus 19
5.14.2 Specimen preparation 19
5.14.3 Procedure 19
5.15 Examination 19
5.15.1 Apparatus 19
5.15.2 Specimen preparation 19
5.15.3 Procedure 20
5.15.4 Examination 20
5.16 Flexibility of armoured cable and metal-sheathed cable 20
5.16.1 Method No. 1 (armoured cable) 20
5.16.2 Method No. 2 (metal-sheathed cable) 20
5.17 Armoured cable bushing insertion 20
5.17.1 Procedure 20
5.17.2 Examination 20
5.18 Internal condition of armour 21
5.19 Copper sulphate test for zinc coatings on steel strip and interlocking cable armour (Preece test) 21
5.19.1 Apparatus 21
5.19.2 Standard solution and wash water 21
5.19.3 Specimen preparation 21
5.19.4 Procedure 22
5.19.5 Examination 22
5.20 Heat resistance — Mandrel test 22
5.20.1 Method No. 1 22
5.20.2 Method No. 2 — Procedure 23
5.21 Baking test for insulating varnish 23
5.21.1 Specimen preparation and baking 23
5.21.2 Bending 23
5.22 Swelling and blistering 23
5.23 Electrical tests 23
5.23.1 Dielectric strength 23
5.23.2 Insulation resistance (IR) 25
5.23.3 Spark test 26
5.23.4 Permittivity (formerly SIC) 26
5.23.5 Surface leakage resistivity — Method No. 1 26
5.23.6 Surface leakage resistivity — Method No. 2 26
5.23.7 Overload — Method No. 3 27
5.23.8 Resistance of interlocking armour or metal sheath 27
5.23.9 Continuity of conductors 28
5.23.10 Arcing 28
5.24 Insulation fall-in test 28
5.25 Test to determine acid gas evolution 28
5.26 Durability of printing 28
5.27 Burning particles (dropping) test 28
5.28 Oxygen index 28
5.29 Strand blocking test 28
5.30 Circuit integrity test 28
5.31 Temperature rating of new materials 29

Annexes
A (informative) — Circuit integrity tests — Classification 35

Tables
1 — Limiting number of test specimens for hydrochloric acid test 29
2 — Data for ammonium persulphate test 29
3 — Mandrel diameters for ozone test 30
4 — Condition of specimen for tension and elongation test 30
5 — Mandrel diameters for insulating varnish test 30
6 — Mandrel diameter for “U” bend discharge 31

Figures
1 — Convenient form of generator and specimen chamber 32
2 — Electronic ozonometer 33
3 — Specimen in clamps for tension test 34
Technical Committee on Wiring Products

K. Rodel
Hubbell Canada,
Pickering, Ontario
Representing Manufacturers

S. Paulsen
Department of Public Safety,
Fredericton, New Brunswick
Representing Regulatory Authorities

B. Haydon
Canadian Standards Association,
Mississauga, Ontario
Project Manager

Representing Regulatory Authorities

G. Montminy
Régie du bâtiment du Québec,
Québec, Québec

T. Olechna
Electrical Safety Authority,
Mississauga, Ontario

A.Z. Tsisserev
City of Vancouver,
Vancouver, British Columbia

Representing Manufacturers

C. Davis
Electro Cables Incorporated,
Trenton, Ontario

P. Desilets
Leviton Manufacturing of Canada Limited,
Pointe-Claire, Québec

B.F. O’Connell
Tyco Thermal Controls (Canada) Ltd.,
Trenton, Ontario

D.S. Reith
Nexans Canada Inc.,
Markham, Ontario

Representing General Interests

B. Beland
Sherbrooke, Québec

D.H. Dunsire
Winnipeg, Manitoba

C. Samuels
ConocoPhillips Canada Ltd.,
Calgary, Alberta

T. Simmons
British Columbia Institute of Technology,
Burnaby, British Columbia
Subcommittee on Test Methods for Wires and Cables

<table>
<thead>
<tr>
<th>Name</th>
<th>Company/Location</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Hartley</td>
<td>Nexans Canada Inc., Markham, Ontario</td>
<td>Chair</td>
</tr>
<tr>
<td>E. Bourgeault</td>
<td>Shawflex, Toronto, Ontario</td>
<td></td>
</tr>
<tr>
<td>B.L. Bukovec</td>
<td>The Radix Wire Company, Cleveland, Ohio, USA</td>
<td></td>
</tr>
<tr>
<td>C. Davis</td>
<td>Electro Cables Incorporated, Trenton, Ontario</td>
<td></td>
</tr>
<tr>
<td>F. Dawson</td>
<td>DuPont Canada Inc., Streetsville, Ontario</td>
<td></td>
</tr>
<tr>
<td>G. L. Dorna</td>
<td>Belden Wire & Cable Company Engineering Center, Richmond, Indiana, USA</td>
<td></td>
</tr>
<tr>
<td>B. Harmer</td>
<td>CSA International, Toronto, Ontario</td>
<td></td>
</tr>
<tr>
<td>T. R. Jurczak</td>
<td>General Cable, Fort Wayne, Indiana, USA</td>
<td></td>
</tr>
<tr>
<td>C. Lemay</td>
<td>Prysmian Power Cables and Systems Canada Ltd., Saint-Jean-sur-Richelieu, Québec</td>
<td></td>
</tr>
<tr>
<td>N. Maennling</td>
<td>Lanark, Ontario</td>
<td></td>
</tr>
<tr>
<td>B.F. O’Connell</td>
<td>Tyco Thermal Controls (Canada) Ltd., Trenton, Ontario</td>
<td></td>
</tr>
<tr>
<td>J. Prema</td>
<td>Shawflex, Toronto, Ontario</td>
<td></td>
</tr>
<tr>
<td>V. Rowe</td>
<td>Westbank, British Columbia</td>
<td></td>
</tr>
<tr>
<td>T. Rudd</td>
<td>Belden (Canada) Inc., Cobourg, Ontario</td>
<td></td>
</tr>
<tr>
<td>H. Sarma</td>
<td>Kriya Consulting, Brampton, Ontario</td>
<td></td>
</tr>
<tr>
<td>K. Waterman</td>
<td>Draka Cableteq USA, North Dighton, Massachusetts, USA</td>
<td></td>
</tr>
<tr>
<td>J. Willner</td>
<td>Bolton, Ontario</td>
<td></td>
</tr>
<tr>
<td>L. Lетеа</td>
<td>Canadian Standards Association, Mississauga, Ontario</td>
<td>Project Manager</td>
</tr>
</tbody>
</table>
Preface

This Standard is considered suitable for use for conformity assessment within the stated scope of the Standard.

This Standard was prepared by the Subcommittee on Test Methods for Wires and Cables, under the jurisdiction of the Technical Committee on Wiring Products and the Strategic Steering Committee on Requirements for Electrical Safety, and has been formally approved by the Technical Committee.

Interpretations: The Strategic Steering Committee on Requirements for Electrical Safety has provided the following direction for the interpretation of standards under its jurisdiction: “The literal text shall be used in judging compliance of products with the safety requirements of this Standard. When the literal text cannot be applied to the product, such as for new materials or construction, and when a relevant committee interpretation has not already been published, CSA’s procedures for interpretation shall be followed to determine the intended safety principle.

September 2009

Notes:

1. Use of the singular does not exclude the plural (and vice versa) when the sense allows.
2. Although the intended primary application of this Standard is stated in its Scope, it is important to note that it remains the responsibility of the users of the Standard to judge its suitability for their particular purpose.
3. This publication was developed by consensus, which is defined by CSA Policy governing standardization — Code of good practice for standardization as “substantial agreement. Consensus implies much more than a simple majority, but not necessarily unanimity”. It is consistent with this definition that a member may be included in the Technical Committee list and yet not be in full agreement with all clauses of this publication.
4. CSA Standards are subject to periodic review, and suggestions for their improvement will be referred to the appropriate committee.
5. All enquiries regarding this Standard, including requests for interpretation, should be addressed to Canadian Standards Association, 5060 Spectrum Way, Suite 100, Mississauga, Ontario, Canada L4W 5N6.

Requests for interpretation should

(a) define the problem, making reference to the specific clause, and, where appropriate, include an illustrative sketch;
(b) provide an explanation of circumstances surrounding the actual field condition; and
(c) be phrased where possible to permit a specific “yes” or “no” answer.

Committee interpretations are processed in accordance with the CSA Directives and guidelines governing standardization and are published in CSA’s periodical Info Update, which is available on the CSA Web site at www.csa.ca.
C22.2 No. 0.3-09
Test methods for electrical wires and cables

1 Scope

1.1 General
This Standard describes the apparatus, test methods, and formulas to be used in carrying out the tests and calculations required by CSA electrical wire and cable Standards.

1.2 Acceptance requirements
The acceptance requirements expected to be fulfilled through the testing of any particular type of wire or cable are contained in the Standard relating to that type and do not constitute a part of this Standard.

1.3 Terminology
In CSA Standards, “shall” is used to express a requirement, i.e., a provision that the user is obliged to satisfy in order to comply with the standard; “should” is used to express a recommendation or that which is advised but not required; and “may” is used to express an option or that which is permissible within the limits of the standard. Notes accompanying clauses do not include requirements or alternative requirements; the purpose of a note accompanying a clause is to separate from the text explanatory or informative material. Notes to tables and figures are considered part of the table or figure and may be written as requirements. Annexes are designated normative (mandatory) or informative (non-mandatory) to define their application.

2 Reference publications
This Standard refers to the following publications, and where such reference is made, it shall be to the edition listed below, including all amendments published thereto.

CSA (Canadian Standards Association)
C22.1-09
Canadian Electrical Code, Part I

CAN/CSA-C22.2 No. 0 (under development)
General Requirements — Canadian Electrical Code, Part II

CAN/CSA-C22.2 No. 2556-07
Wire and cable test methods

ASTM International (American Society for Testing and Materials)
D1693-08
Standard Test Method for Environmental Stress-Cracking of Ethylene Plastics

D2863-09
Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index)

September 2009