IEEE Standard for CASE Tool Interconnections—Reference Model for Specifying System Behavior

Sponsor

Software and Systems Engineering Standards Committee of the IEEE Computer Society

Approved 10 December 2008

IEEE-SA Standards Board
Abstract: A reference model that provides a common interpretation basis by which tools can express and communicate the observable features of system/software behavior to users and to other tools is presented. This standard specifies a Conceptual Metamodel for understanding and describing the causal behavior for a system. The purpose of this Conceptual Metamodel is to express causal behavior and compositions of causal behavior in a model that integrates all observable operational features of a system into one behavior specification. This Conceptual Metamodel is useful for analyzing systems, for constructing particular system behavior models, and for using those models in the specification, design, and evaluation of engineered systems. It provides the necessary semantic elements for describing general hardware/software systems, including hardware-only, software-only, or mixed system components, and it allows these different types of components to be treated in a consistent manner, providing a basis for representing a wide variety of systems.

Keywords: behavior model, behavior specification, Computer-Aided Software Engineering (CASE) tools, engineering model, model-based testing, modeling principles, requirements, software specification, specification-based testing, system, system testing
IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus development process, approved by the American National Standards Institute, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and serve without compensation. While the IEEE administers the process and establishes rules to promote fairness in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy of any of the information or the soundness of any judgments contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or that the use of the material contained herein is free from patent infringement. IEEE Standards documents are supplied “AS IS.”

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon his or her independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate, seek the advice of a competent professional in determining the appropriateness of a given IEEE standard.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration. A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board Operations Manual shall not be considered the official position of IEEE or any of its committees and shall not be considered to be, nor be relied upon as, a formal interpretation of the IEEE. At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear that his or her views should be considered the personal views of that individual rather than the formal position, explanation, or interpretation of the IEEE.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Comments on standards and requests for interpretations should be submitted to the following address:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
Piscataway, NJ 08854
USA

Authorization to photocopy portions of any individual standard for internal or personal use is granted by The Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.
Introduction

This introduction is not part of IEEE Std 1175.4-2008, IEEE Standard for CASE Tool Interconnections—Reference Model for Specifying System Behavior.

The 1175™ family of standards

NOTE—References to “P1175.X” in this standard refer to members of the 1175 family of standards that were not yet approved at the time that this standard was published.

This standard is a member of the 1175 family of IEEE standards. The members of this family include the following:

<table>
<thead>
<tr>
<th>Standard number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE Std 1175.1™-2002</td>
<td>IEEE Guide for CASE Tool Interconnections—Classification and Description</td>
</tr>
<tr>
<td>IEEE Std 1175.2™-2006</td>
<td>IEEE Recommended Practice for CASE Tool Interconnection—Characterization of Interconnections</td>
</tr>
<tr>
<td>IEEE Std 1175.3™-2004</td>
<td>IEEE Standard for CASE Tool Interconnections—Reference Model for Specifying Software Behavior</td>
</tr>
<tr>
<td>IEEE Std 1175.4™-2008</td>
<td>IEEE Standard for CASE Tool Interconnections—Reference Model for Specifying System Behavior</td>
</tr>
<tr>
<td>IEEE P1175.5™</td>
<td>Draft Standard for Computer-Aided Software Engineering (CASE) Tool Interconnections—Reference Data Metamodel for System Behavior Specifications</td>
</tr>
</tbody>
</table>

* The numbers in brackets correspond to those of the bibliography in Annex A.
† IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, Piscataway, NJ 08854-1331, USA (http://standards.ieee.org/).
‡ This IEEE standards project was not approved by the IEEE-SA Standards Board at the time this publication went to press. For information about obtaining a draft, contact the IEEE.
** The title and description of IEEE P1175.5 are current as of the IEEE Std 1175.4-2008 publication date. Because the P1175.5 draft was not yet approved as of March 2009, this information is subject to change. For the most current P1175.5 information, please consult IEEE Xplore at http://ieeexplore.ieee.org/xpl/standards.jsp.

This family of standards replaces IEEE Std 1175-1991 [B3]. IEEE Std 1175-1991 was advanced to a full-use standard in 1994. It covered a number of closely related subjects, and the scope of material contained was able to serve a number of divergent interests.

This family of standards restructures and substantially augments the material in IEEE Std 1175-1991. It has been divided into several individually useful documents in order to facilitate its use by different communities of interest. These guides, recommended practices, and standards generally address issues involved in characterizing the kinds of interconnections that exist between a computing system tool and its environment. Although particularly intended to address the implementation and use of Computer-Aided Software Engineering (CASE) tools, the discussion of interconnections in this family actually has wider applicability to computing system tools in general, beyond only CASE tools.

a Notes in text, tables, and figures of a standard are given for information only and do not contain requirements needed to implement this standard.
b Although approved in 1991, IEEE Std 1175-1991 was actually published in 1992 and is sometimes found referenced as IEEE Std 1175-1992. It appears in the standards numerical listing on the IEEE Xplore Web site (http://ieeexplore.ieee.org/) as IEEE Std 1175-1992, with the title IEEE Trial-Use Standard Reference Model for Computing System Tool Interconnections. In 1994, the term trial-use was removed from the title when the standard was approved for full-use status. The 1994 version, which was identical to the 1992 publication except for the title and minor editorial corrections, is not available on the IEEE Web site.
Four kinds of interconnections with a computing system tool are addressed: interconnections with organizations, users, platforms, and other computing system tools. Consideration of interconnections is important to understanding, selecting, implementing, and using computing system tools. Also, although many computing system tools do not need to communicate behavior descriptions of subject systems, their creators need to develop such behavior descriptions for the tools themselves.

A brief summary overview of each of the members of this family of standards is given in the following paragraphs. A more complete overview is available in IEEE Std 1175.1-2002 [B4], which provides an integrated overview of the members of the 1175 family of standards, and it describes the fundamental concepts that provide a basis for organizing the material.

IEEE Std 1175.1-2002, IEEE Guide for CASE Tool Interconnections—Classification and Description

IEEE Std 1175.1-2002 [B4] is a guide to the IEEE 1175 family of standards. It describes how these standards are intended to be used to accomplish the effective integration of computing system tools into a productive engineering environment and sets forth the fundamental concepts on which these standards are based. These concepts establish the integrating framework for the other members of this family of standards. IEEE Std 1175.1-2002 describes the scope of application of each member standard, the various issues addressed in each standard, and the interrelationships among the members of the 1175 family of standards.

IEEE Std 1175.2-2006, IEEE Recommended Practice for CASE Tool Interconnection—Characterization of Interconnections

The IEEE Std 1175.2-2006 [B5] recommended practice presents four contexts for a computing system tool’s interconnections that offer insight into the operational problems of interconnecting computing system tools with their environment. This recommended practice establishes recommended collections of standard contextual attributes describing relationships between a computing system tool and its organizational deployment, its human user, its executable platform, and its peer tools, as illustrated in Figure a. These contextual attributes are of the “news-story” form that includes: who, what, when, where, and why. The values of these contextual attributes are references to organizational, industrial, and professional standards. By assisting users to reach a clear understanding of the context of operation for a computing system tool, this recommended practice contributes to the effective implementation and application of computing system tools.

IEEE Std 1175.3-2004, IEEE Standard for CASE Tool Interconnections—Reference Model for Specifying Software Behavior

IEEE Std 1175.3-2004 [B6] is an expansion of Part 3 of IEEE Std 1175-1991. It focuses specifically on a common set of modeling concepts found in commercial CASE tools for describing the operational behavior of a software product, and it provides a formal, logical model for describing this behavior. IEEE Std 1175.3-2004 also defines a Semantic Transfer Language (STL) for communicating software behavior descriptions from one tool to another. A notable feature of the STL is its design for human readability, which makes STL text files suitable for use in software design reviews by users unfamiliar with computing system tool diagramming notations. In addition, the design of the STL syntax readily permits analysts to prepare and edit STL descriptions using a text editor or word processor.

To permit backward compatibility with Part 3 of IEEE Std 1175-1991, IEEE Std 1175.3-2004 makes no changes to the STL syntax or to the rules for conformance to this syntax as originally defined in that
standard. However, some aspects of the 1991 syntax that were previously left as user-defined have now been specified in order to increase the consistency and reliability with which the STL may be used for exchanging software specification information. In addition, improvements have been made in how the STL syntax is defined and explained. Finally, the STL Interconnection Profile has been replaced with more straightforward, “user-friendly” tabular and comma-separated-value formats to define a Tool Interconnection Profile that can serve the same purpose as the original form of the profile.

Figure a

IEEE Std 1175.4-2008, IEEE Standard for CASE Tool Interconnections—Reference Model for Specifying System Behavior

IEEE Std 1175.4-2008 encompasses the description of the types of the computing systems supported by IEEE Std 1175.3-2004 [B6], but it goes further, providing a basis for representing a wider variety of systems. Specifically, IEEE Std 1175.4-2008 provides the necessary semantic elements for describing general hardware/software systems, including hardware-only, software-only, or mixed system components, and it allows these different types of components to be treated in a consistent manner.

This standard defines a Data Metamodel for system behavior specifications. Figure b illustrates one use for such a behavior specification metamodel in the context of supporting information transfer from one user’s tool to another user’s tool. The Data Metamodel provides explicit definitions of typed data elements, information representations, and relationships with which behavior models for subject systems can be instantiated. These elements, representations, and relations serve to reify the Conceptual Metamodel for system behavior specification described in IEEE Std 1175.4-2008.
When multiple tools are being used to describe a system, each may maintain its own information metamodel. However, as depicted in Figure b, to share information about a subject system, each tool must map its own individual metamodel into a common Behavior Specification Metamodel.

Figure b

Notice to users

Laws and regulations

Users of these documents should consult all applicable laws and regulations. Compliance with the provisions of this standard does not imply compliance to any applicable regulatory requirements. Implementers of the standard are responsible for observing or referring to the applicable regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

This document is copyrighted by the IEEE. It is made available for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of engineering practices and methods. By making this document available for use and adoption by public authorities and private users, the IEEE does not waive any rights in copyright to this document.
Updating of IEEE documents

Users of IEEE standards should be aware that these documents may be superseded at any time by the issuance of new editions or may be amended from time to time through the issuance of amendments, corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the document together with any amendments, corrigenda, or errata then in effect. In order to determine whether a given document is the current edition and whether it has been amended through the issuance of amendments, corrigenda, or errata, visit the IEEE Standards Association Web site at http://ieeexplore.ieee.org/xpl/standards.jsp, or contact the IEEE at the address listed previously.

For more information about the IEEE Standards Association or the IEEE standards development process, visit the IEEE-SA Web site at http://standards.ieee.org.

Errata

Errata, if any, for this and all other standards can be accessed at the following URL: http://standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL for errata periodically.

Interpretations

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/index.html.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. The IEEE is not responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patents Claims or determining whether any licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further information may be obtained from the IEEE Standards Association.
Participants

At the time this standard was submitted to the IEEE-SA Standards Board for approval, the 1175.4 Working Group had the following membership:

Carl A. Singer, Chair

Carl A. Singer
Jimi E. Arvidsson
Bakul Banerjee
Abby Beifeld
Peter L. Eirich
Subramanya R. Jois

Paul C. Jorgensen
Sohel M. Khan
Dwayne L. Knirk
Mohamed Ashraf Kottilungal
Horace H. Lawrence

Álvaro F. C. Medeiros
Lou F. Pinto
Robert M. Poston
Subrato Sensharma
Robert M. Wessely

The following members of the individual balloting committee voted on this standard. Balloters may have voted for approval, disapproval, or abstention.

Butch Anton
Angela Anuszewski
Bakul Banerjee
Zulema Belyeu
Pieter Botman
Juan Carreon
Lanna Carruthers
Lawrence Catchpole
Keith Chow
S. Claassen
Paul Croll
Geoffrey Darnton
Thomas Dineen
Sourav Dutta
Yaacov Fenster

Allan Gillard
Randall Groves
John Harauz
Mark Henley
Werner Hoelzl
Atsushi Ito
Mark Jaeger
Dwayne L. Knirk
Thomas Kurihara
Susan Land
Richard Martin
William Milam
James Moore
Rajesh Murthy

Ulrich Pohl
Robert Robinson
Rey Robles
Randall Safier
Bartien Sayogo
Robert Schaaf
David J. Schultz
Stephen Schwarm
Carl A. Singer
Luca Spotorno
Thomas Starai
Walter Struppler
Vincent Tume
Paul Work
Oren Yuen
When the IEEE-SA Standards Board approved this standard on 10 December 2008, it had the following membership:

Robert M. Grow, Chair
Thomas Prevost, Vice Chair
Steve M. Mills, Past Chair
Judith Gorman, Secretary

Victor Berman
Richard DeBlasio
Andy Drozd
Mark Epstein
Alexander Gelman
William R. Goldbach
Arnold M. Greenspan
Kenneth S. Hanus
Jim Hughes
Richard H. Hulett
Young Kyun Kim
Joseph L. Koepfinger*
John Kulick
David J. Law
Glenn Parsons
Ronald C. Petersen
Chuck Powers
Narayanan Ramachandran
Jon Walter Rosdahl
Anne-Marie Sahazizian
Malcolm V. Thaden
Howard L. Wolfman
Don Wright

*Member Emeritus

Also included are the following nonvoting IEEE-SA Standards Board liaisons:

Satish K. Aggarwal, NRC Representative
Michael Janezic, NIST Representative
Jennie Steinhagen
IEEE Standards Program Manager, Document Development
Malia Zaman
IEEE Standards Program Manager, Technical Program Development
Contents

1. Overview .. 1
 1.1 Scope ... 1
 1.2 Purpose .. 1
 1.3 Applicability .. 2
 1.4 Engineering models and metamodels ... 3
 1.5 Audience ... 4
 1.6 Conformance ... 4
 1.7 Organization of this standard .. 5

2. Normative references .. 5

3. Special terms .. 6

4. System behavior model requirements 8
 4.1 Application scope .. 9
 4.2 Declarative form ... 10
 4.3 Predictive ability ... 11
 4.4 Test creation ability ... 14
 4.5 Life cycle roles .. 15
 4.6 Common interpretation ... 16

5. System behavior metamodels ... 16
 5.1 Developing the Conceptual and Data Metamodels for behavior modeling 16
 5.2 Using the Conceptual and Data Metamodels for behavior modeling .. 18

6. Conceptual Metamodel foundations 19
 6.1 Agent of behavior—Unit ... 19
 6.2 Percepts of unit behavior—Boundary interfaces ... 24
 6.3 Concepts of unit behavior—Behavior patterns .. 30
 6.4 Observables—Base quantities .. 53
 6.5 Composition of unit behavior—Build structures .. 56
 6.6 Prediction of unit behavior .. 63

7. Conceptual Metamodel requirements ... 64
 7.1 Requirements for metamodel organization 64
 7.2 Requirements for representing Boundary Interfaces ... 71
 7.3 Requirements for representing Behavior Patterns .. 72
 7.4 Requirements for representing Base Quantities .. 75
 7.5 Requirements for representing Build Structures .. 78

Annex A (informative) Bibliography ... 80

Annex B (informative) Comparison of the system behavior model with other engineering models........... 81
IEEE Standard for CASE Tool Interconnections—Reference Model for Specifying System Behavior

IMPORTANT NOTICE: This standard is not intended to ensure safety, security, health, or environmental protection in all circumstances. Implementers of the standard are responsible for determining appropriate safety, security, environmental, and health practices or regulatory requirements.

This IEEE document is made available for use subject to important notices and legal disclaimers. These notices and disclaimers appear in all publications containing this document and may be found under the heading “Important Notice” or “Important Notices and Disclaimers Concerning IEEE Documents.” They can also be obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/disclaimers.html.

1. Overview

1.1 Scope

Most inter-tool data transfer standards deal with protocol and syntax of the transfer, with a shared semantic basis assumed. This standard provides an explicitly defined metamodel (and meta-metamodel) for specifying system and software behavior. It defines a semantic basis of observables that allows each tool, whatever its own internal ontology, to communicate facts about the behavior of a subject system as precisely as the tool’s metamodel allows. Conventional tool model elements are reduced into simpler, directly observable fact statements about system behavior. This metamodel is much expanded over the original metamodel for software behavior in Part 3 of IEEE Std 1175™-1991 [B3].

1.2 Purpose

This reference model provides a common interpretation basis by which tools may express and communicate the observable features of system/software behavior to users and to other tools. Tools incorporating this metamodel in their import/export facilities enable engineers to interconnect best-in-class analysis and specification tools for integrated problem solving. Another feature of this metamodel is that it

1 The numbers in brackets correspond to those of the bibliography in Annex A.