This document provides guidance for quality control of commercial systems for microbial identification from culture, including information that pertains to manufacturers, distributors, and laboratory users. The intent is to ensure optimal performance of a microbial identification system in an efficient (streamlined) manner.

A guideline for US application developed through the Clinical and Laboratory Standards Institute consensus process.
Clinical and Laboratory Standards Institute

Setting the standard for quality in clinical laboratory testing around the world.

The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing clinical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement, but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advancements in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI’s consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential, and may be submitted by anyone, at any time, on any document. All comments are addressed according to the consensus process by a committee of experts.

Appeals Process

If it is believed that an objection has not been adequately addressed, the process for appeals is documented in the CLSI Standards Development Policies and Process document.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For further information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: +1.610.688.0100
F: +1.610.688.0700
www.clsi.org
standard@clsi.org
Abstract

Clinical and Laboratory Standards Institute document M50-A—Quality Control for Commercial Microbial Identification Systems; Approved Guideline includes a process for streamlined quality control (QC) of commercial microbial identification systems (MISs) that utilize multiple substrates and/or reagents to identify aerobic or anaerobic bacteria, yeasts, moulds, or yeast-like algae from culture. It specifies responsibilities of the manufacturer, distributor, and user. M50-A includes guidelines that may be followed when using an MIS of proven reliability to take a modified QC approach, rather than meeting requirements included in the Clinical Laboratory Improvement Amendments of 1988 regulations. The streamlined QC approach was developed following an evaluation of data provided by the American Society for Microbiology for a survey conducted to determine the QC failure rates of commercial MISs. The data showed a failure rate of less than 0.1% for all commercial MISs surveyed. This document is based on United States (US) regulations and will also serve as a useful resource for a wider audience. It is anticipated that M50-A will be used extensively in the United States and internationally to reduce resources spent on excessive QC testing.

Committee Membership

Area Committee on Microbiology

Mary Jane Ferraro, PhD, MPH
Chairholder
Massachusetts General Hospital
Boston, Massachusetts

John H. Rex, MD, FACP
Vice-Chairholder
AstraZeneca
Cheshire, United Kingdom

Betty (Betz) A. Forbes, PhD, D(ABMM)
Medical College of Virginia
Richmond, Virginia

Freddie Mae Poole
FDA Center for Devices and Radiological Health
Rockville, Maryland

Daniel F. Sahm, PhD
Eurofins Medinet
Herondon, Virginia

Fred C. Tenover, PhD, ABMM
Centers for Disease Control and Prevention
Atlanta, Georgia

Advisors

Barbara Ann Body, PhD, D(ABMM)
Laboratory Corporation of America
Burlington, North Carolina

Ellen Jo Baron, PhD
Stanford Hospital and Clinics
Palo Alto, California

Donald R. Callihan, PhD
BD Diagnostic Systems
Sparks, Maryland

Lynne S. Garcia, MS
LSG & Associates
Santa Monica, California

Richard L. Hodinka, PhD
Children’s Hospital of Philadelphia
Philadelphia, Pennsylvania

James H. Jorgensen, PhD
University of Texas Health Science Center
San Antonio, Texas

Subcommittee on Quality Control for Commercial Microbial ID Systems

Nancy L. Anderson, MMSc, MT(ASCP)
Chairholder
Centers for Disease Control and Prevention
Atlanta, Georgia

Linda C. Bruno, MA, MT(ASCP)
University of Illinois Medical Center
Chicago, Illinois

Kimberle C. Chapin, MD, D(ABMM), F(CAP)
Rhode Island Hospital
Providence, Rhode Island

Rob Eusebio, MSHA, MT(ASCP)
Siemens Healthcare Diagnostics
West Sacramento, California

Yvette S. McCarter, PhD, DABMM
University of Florida College of Medicine
Jacksonville, Florida

David H. Pincus, MS, SM(AAM)
bioMérieux, Inc.
Hazelwood, Missouri

Jon E. Salomon, BS
BD Diagnostic Systems
Sparks, Maryland

Kathleen Todd, MT(ASCP)
Centers for Medicare & Medicaid Services
Baltimore, Maryland

Advisors

Paul Campognone, MS, MT(ASCP)SM
BD Diagnostic Systems
Sparks, Maryland

Judy A. Daly, PhD
University of Utah-Primary Children’s Medical Center
Salt Lake City, Utah

Alice Weissfeld, PhD, D(ABMM), F(AAM)
Microbiology Specialists, Inc.
Houston, Texas

Gail L. Woods, MD
Central Arkansas Veterans Healthcare System
Little Rock, Arkansas

Matthew A. Wikler, MD, MBA, FIDSA
Pacific Beach BioSciences, Inc.
San Diego, California

Melvin P. Weinstein, MD
Robert Wood Johnson University Hospital
New Brunswick, New Jersey
Advisors (Continued)

Jay M. Goodman, MS, M(ASCP)
St. Mary’s Hospital
West Palm Beach, Florida

Francisca L. Lehr, MS, MT(ASCP)
Centers for Medicare & Medicaid Services
Seattle, Washington

Brandi Limbago, PhD
Centers for Disease Control and Prevention
Atlanta, Georgia

Linda M. Mann, PhD, D(ABMM)
Siemens Healthcare Diagnostics
West Sacramento, California

Michael Mitchell, MD
U Mass Memorial Medical Center
Worcester, Massachusetts

Rita C. Parke, MS, MT(ASCP) SM, DLM
Laboratory Corporation of America
Burlington, North Carolina

Megan E. Sawchuk, MT(ASCP)
The Joint Commission
Oakbrook Terrace, Illinois

Paul C. Schreckenberger, PhD, D(ABMM), F(AAM)
Loyola University Medical Center
Maywood, Illinois

Cindy Somogy, MT(ASCP), MBA
bioMérieux, Inc.
Hazelwood, Missouri

Norrine Thompson,
BSMT(ASCP)SM
Albany Medical Center
Albany, New York

Staff

Clinical and Laboratory Standards Institute
Wayne, Pennsylvania

Lois M. Schmidt, DA
Vice President, Standards Development and Marketing

Tracy A. Dooley, BS, MLT(ASCP)
Staff Liaison

Melissa A. Lewis
Editor

Acknowledgment

CLSI acknowledges the American Society for Microbiology and its professional committees, with special recognition of the following individuals for their contributions that lead to the development of this guideline:

Joseph Campos, PhD – Chair, Committee on Laboratory Practices, Public and Scientific Affairs Board
Suzanne Leous, MPA – Manager, Public Affairs
David Sewell, PhD – Committee on Professional Affairs, Public and Scientific Affairs Board
Alice Weissfeld, PhD – Chair, Committee on Professional Affairs, Public and Scientific Affairs Board
Contents

Abstract .. i

Committee Membership .. iii

Foreword .. vii

1 Scope .. 1

2 Introduction .. 1

3 Standard Precautions .. 2

4 Terminology ... 2

4.1 Definitions ... 2

4.2 Abbreviations/Acronyms .. 5

5 General Responsibilities of the Manufacturer, Distributor, and User .. 6

5.1 Manufacturer .. 6

5.2 The Distributor .. 7

5.3 The User .. 8

6 Process for Quality Control of Microbial Identification Systems .. 9

6.1 Manufacturer’s Responsibilities .. 9

6.2 User’s Responsibilities to Qualify for Streamlined Quality Control 10

7 Quality Control Procedures for Microbial Identification Systems .. 12

7.1 Quality Control Organisms .. 12

7.2 Quality Control Testing Process .. 13

7.3 Quality Control Testing Frequency .. 13

7.4 Interpretation of Quality Control Test Results .. 13

7.5 Corrective Action ... 13

References ... 15

Appendix A. Manufacturer’s Requirements for Streamlined Quality Control Section of Package Insert or Product Information for a Microbial Identification System ... 16

Appendix B. User’s Requirements to Qualify for Streamlined Quality Control of a Microbial Identification System ... 17

Appendix C. Documentation of Streamlined Quality Control Results – Minimum Record Requirements ... 18

Appendix D. Troubleshooting Guide for Microbial Identification System Quality Control Failures ... 19

Summary of Comments and Subcommittee Responses ... 22

The Quality Management System Approach ... 26

Related CLSI Reference Materials .. 27
Foreword

This document is based on United States (US) regulations and will also serve as a useful resource for a wider audience. It is anticipated that M50-A will be used extensively in the United States and internationally to reduce resources spent on excessive quality control (QC) testing.

Historically, in the United States, the accepted practice for QC of conventional biochemical reagents or miniaturized systems used for microbial identification from culture involved checking positive and negative reactivity with each batch, lot number, and shipment of reagents or systems. This practice was codified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA ‘88) for any commercial microbial identification system (MIS) using two or more substrates, two or more reagents, or a combination of both. The CLIA regulations require each laboratory to test every substrate and/or reagent that is part of an MIS for positive and negative reactivity, using biologic QC organisms, with each batch, lot number, and shipment. Over time, as MISs have evolved and become more complex, they have incorporated increasing numbers of reagents and substrates; this has resulted in the need for an increased number of QC organisms to check positive and negative reactivity for all components. In addition, some MISs now utilize identification algorithms that do not allow for total compliance with this CLIA QC requirement, but have proven reliability in organism identification. Thus, in some cases, meeting this QC requirement is now impossible; whereas in other cases, it imposes financial and workflow burdens on microbiology laboratories, and may be unnecessary for MISs of proven reliability produced by manufacturers that meet quality standards and applicable regulations for control and distribution.

After considering this issue, in 2005, the American Society for Microbiology (ASM), at the suggestion of the Clinical Laboratory Improvement Advisory Committee (CLIAC), conducted a microbiology laboratory survey to determine the QC failure rates of commercial MISs in a random selection of laboratories that perform bacterial and fungal identification from culture. Two hundred ninety-two laboratories provided valid responses to the survey for 9886 lots of MISs. The laboratories varied in the type of facility, source of primary accreditation, and number of cultures performed per year. The number of different MISs used in the responding laboratories to identify gram-positive and gram-negative aerobic bacteria, Neisseria/Haemophilus, anaerobic bacteria, and yeasts ranged from 1 to 13, with the majority of laboratories using five or more systems. Of the 9886 lots of MISs tested, 912 lots failed QC. For these failures, 905 were caused by the QC organism(s) used; and in seven cases, the failure was due to the MIS itself, specifically certain reagents and/or substrates that appeared to be labile and did not react as expected. In these cases, the faulty MIS lots were replaced by the manufacturer. Based on these seven instances, the failure rate due to the MIS was less than 0.1% for all MISs tested.

ASM presented these QC survey data to CLIAC, and recommended that the Clinical and Laboratory Standards Institute (CLSI) use its consensus process to analyze the data and develop guidelines to address appropriate QC for MISs. Subsequently, CLSI recommended convening a subcommittee representing laboratorians, manufacturers, and government (specifically, the Centers for Disease Control and Prevention [CDC], Centers for Medicare & Medicaid Services [CMS], and US Food and Drug Administration [FDA]) to determine whether and under what circumstances streamlined QC for MIS would be acceptable. This consensus document describes the acceptable criteria for allowing streamlined QC, as compared to the requirements specified by the CLIA regulations for MISs produced by manufacturers that meet specific quality standards and regulations. It is intended to provide practical guidelines for laboratories to ensure the quality of their microbial identification results when using commercial MISs. It is anticipated that these guidelines will receive widespread use in the United States and internationally, and could reduce unnecessary costs and other resources spent on excessive QC testing.

Key Words

Commercial microbial identification system (MIS), key indicator strain, quality control (QC), reagent, streamlined QC, substrate
Quality Control for Commercial Microbial Identification Systems; Approved Guideline

1 Scope

This document provides quality control (QC) information for commercially available microbial identification systems (MISs), which are test systems that utilize multiple substrates and/or reagents to identify aerobic or anaerobic bacteria, yeasts, moulds, or yeast-like algae (eg, *Prototheca* species) grown from culture. It does not address primary isolation media, chromogenic agars, direct antigen tests, stains, or molecular methodologies used for microbial identification; nor does it address QC of antimicrobial susceptibility tests. The document specifies the QC responsibilities of the manufacturer, distributor, and user, and identifies conditions under which an MIS with proven reliability can qualify for streamlined QC testing. The modified approach may be applied after the user verifies acceptable MIS performance as specified in this guideline. Implementation of streamlined QC testing by users assumes that the MIS performance is monitored by overall quality assurance (QA) programs on the part of the manufacturer, distributor, and user.

This document is based on United States (US) regulations and will also serve as a useful resource for a wider audience. It is anticipated that M50-A will be used extensively in the United States and internationally to reduce resources spent on excessive QC testing.

2 Introduction

Prior to 1998, the US Food and Drug Administration (FDA) considered MISs used clinically as Class I nonexempt medical devices that required premarket notification (510[k]) submission and review. Under the FDA Modernization Act of 1997, this type of medical device was reclassified to Class I exempt status and no longer requires 510(k) clearance. Today, MISs that are marketed for clinical use in the United States should be registered and the devices listed with the FDA. In meeting the FDA Quality System Regulation (QSR) for Current Good Manufacturing Practice requirements, the same criteria as prior to reclassification must be met by manufacturers to support the intended use, and to establish performance characteristics for a device just as though a 510(k) submission was required. The data package must be assembled and retained through the life of the product at the manufacturer’s site, and must be available for inspection by the FDA. If an MIS or other clinical product is marketed globally, other regulatory agencies may require submission of a data package and/or registration of the product prior to marketing (eg, In Vitro Diagnostic Directive 98/79/European Commission in the European Union, Ministry of Health in Japan).

In the United States and its territories, any testing of human specimens for diagnosis, prevention, or treatment of disease or assessment of health is subject to the Clinical Laboratory Improvement Amendments of 1988 (CLIA ‘88) regulations. Also subject to CLIA are facilities outside the United States or its territories that perform testing as described above when such tests are referred by, and the results are returned to, a facility or authorized person in the United States or its territories. As per the CLIA regulations effective 1 September 1992, prior to performing patient testing using a commercial MIS, each laboratory needs to verify that it can obtain performance specifications comparable to those of the manufacturer. For a commercial MIS in use before this date, no verification studies are required. Regardless of the implementation date in a laboratory, for QC of a commercial MIS, the CLIA regulations require a laboratory to check every reagent and/or substrate of each batch, lot number, and shipment when prepared or opened for positive and negative reactivity (42 CFR [Code of Federal Regulations] 493.1256 [e][1]). The CLIA interpretive guidelines (42 CFR 493.1261[a]) also state that the laboratory must use control organisms to verify positive and negative reactivity. This ongoing QC testing is a means of...