Risk-Based Inspection Technology

API RECOMMENDED PRACTICE 581
SECOND EDITION, SEPTEMBER 2008
Risk-Based Inspection Technology

Downstream Segment

API RECOMMENDED PRACTICE 581
SECOND EDITION, SEPTEMBER 2008
Special Notes

API publications necessarily address problems of a general nature. With respect to particular circumstances, local, state, and federal laws and regulations should be reviewed.

Neither API nor any of API's employees, subcontractors, consultants, committees, or other assignees make any warranty or representation, either express or implied, with respect to the accuracy, completeness, or usefulness of the information contained herein, or assume any liability or responsibility for any use, or the results of such use, of any information or process disclosed in this publication. Neither API nor any of API's employees, subcontractors, consultants, or other assignees represent that use of this publication would not infringe upon privately owned rights.

Classified areas may vary depending on the location, conditions, equipment, and substances involved in any given situation. Users of this publication should consult with the appropriate authorities having jurisdiction.

Users of this publication should not rely exclusively on the information contained in this document. Sound business, scientific, engineering, and safety judgment should be used in employing the information contained herein.

Work sites and equipment operations may differ. Users are solely responsible for assessing their specific equipment and premises in determining the appropriateness of applying the instructions. At all times users should employ sound business, scientific, engineering, and judgment safety when using this publication.

API is not undertaking to meet the duties of employers, manufacturers, or suppliers to warn and properly train and equip their employees, and others exposed, concerning health and safety risks and precautions, nor undertaking their obligations to comply with authorities having jurisdiction.

Information concerning safety and health risks and proper precautions with respect to particular materials and conditions should be obtained from the employer, the manufacturer or supplier of that material, or the material safety datasheet.

API publications may be used by anyone desiring to do so. Every effort has been made by the Institute to assure the accuracy and reliability of the data contained in them; however, the Institute makes no representation, warranty, or guarantee in connection with this publication and hereby expressly disclaims any liability or responsibility for loss or damage resulting from its use or for the violation of any authorities having jurisdiction with which this publication may conflict.

API publications are published to facilitate the broad availability of proven, sound engineering and operating practices. These publications are not intended to obviate the need for applying sound engineering judgment regarding when and where these publications should be utilized. The formulation and publication of API publications is not intended in any way to inhibit anyone from using any other practices.

Any manufacturer marking equipment or materials in conformance with the marking requirements of an API standard is solely responsible for complying with all the applicable requirements of that standard. API does not represent, warrant, or guarantee that such products do in fact conform to the applicable API standard.

All rights reserved. No part of this work may be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the publisher. Contact the Publisher, API Publishing Services, 1220 L Street, N.W., Washington, D.C. 20005.

Copyright © 2008 American Petroleum Institute
Foreword

This publication provides quantitative procedures to establish an inspection program using risk-based methods for pressurized fixed equipment, including pressure vessel, piping, tankage, pressure relief devices, and heat exchanger tube bundles. This document is to be used in conjunction with API 580, which provides guidance on developing a risk-based inspection program for fixed equipment in the refining and petrochemical, and chemical process plants. The intent of these publications is for API 580 to introduce the principals and present minimum general guidelines for RBI while this publication provides quantitative calculation methods to determine an inspection plan using a risk-based methodology.

The API Risk-Based Inspection (API RBI) methodology may be used to manage the overall risk of a plant by focusing inspection efforts on the process equipment with the highest risk. API RBI provides the basis for making informed decisions on inspection frequency, the extent of inspection, and the most suitable type of NDE. In most processing plants, a large percent of the total unit risk will be concentrated in a relatively small percent of the equipment items. These potential high-risk components may require greater attention, perhaps through a revised inspection plan. The cost of the increased inspection effort may sometimes be offset by reducing excessive inspection efforts in the areas identified as having lower risk.

Shall: As used in a standard, “shall” denotes a minimum requirement in order to conform to the specification.

Should: As used in a standard, “should” denotes a recommendation or that which is advised but not required in order to conform to the specification.

May: As used in a standard, “may” indicates recommendations that are optional.

Nothing contained in any API publication is to be construed as granting any right, by implication or otherwise, for the manufacture, sale, or use of any method, apparatus, or product covered by letters patent. Neither should anything contained in the publication be construed as insuring anyone against liability for infringement of letters patent.

This document was produced under API standardization procedures that ensure appropriate notification and participation in the developmental process and is designated as an API standard. Questions concerning the interpretation of the content of this publication or comments and questions concerning the procedures under which this publication was developed should be directed in writing to the Director of Standards, American Petroleum Institute, 1220 L Street, N.W., Washington, D.C. 20005. Requests for permission to reproduce or translate all or any part of the material published herein should also be addressed to the director.

Generally, API standards are reviewed and revised, reaffirmed, or withdrawn at least every five years. A one-time extension of up to two years may be added to this review cycle. Status of the publication can be ascertained from the API Standards Department, telephone (202) 682-8000. A catalog of API publications and materials is published annually by API, 1220 L Street, N.W., Washington, D.C. 20005.

Suggested revisions are invited and should be submitted to the Standards Department, API, 1220 L Street, NW, Washington, D.C. 20005, standards@api.org.
PART 1

INSPECTION PLANNING USING API RBI TECHNOLOGY
PART CONTENTS

1 SCOPE ... 5
 1.1 Purpose ... 5
 1.2 Introduction ... 5
 1.3 Risk Management ... 5
 1.4 Organization and Use .. 6
 1.5 Tables ... 7
2 REFERENCES ... 8
3 DEFINITIONS ... 8
 3.1 Definitions ... 8
 3.2 Acronyms .. 10
4 API RBI CONCEPTS .. 11
 4.1 Probability of Failure .. 11
 4.1.1 Overview .. 11
 4.1.2 Generic Failure Frequency ... 11
 4.1.3 Management Systems Factor .. 11
 4.1.4 Damage Factors .. 11
 4.2 Consequence of Failure ... 12
 4.2.1 Overview .. 12
 4.2.2 Level 1 Consequence Analysis .. 12
 4.2.3 Level 2 Consequence Analysis .. 13
 4.3 Risk Analysis .. 14
 4.3.1 Determination of Risk ... 14
 4.3.2 Risk Matrix ... 15
 4.4 Inspection Planning Based on Risk Analysis ... 15
 4.4.1 Overview .. 15
 4.4.2 Risk Target .. 15
 4.4.3 Inspection Effectiveness – The Value of Inspection .. 16
 4.4.4 Inspection Effectiveness – Example ... 17
 4.4.5 Inspection Planning .. 17
 4.5 Nomenclature ... 18
 4.6 Tables ... 19
 4.7 Figures ... 21
5 PRESSURE VESSELS AND PIPING .. 26
 5.1 Probability of Failure .. 26
 5.2 Consequence of Failure .. 26
 5.3 Risk Analysis .. 26
 5.4 Inspection Planning Based on Risk Analysis ... 26
6 ATMOSPHERIC STORAGE TANKS .. 27
 6.1 Probability of Failure .. 27
 6.2 Consequence of Failure .. 27
 6.3 Risk Analysis .. 27
 6.4 Inspection Planning Based on Risk Analysis ... 27
7 PRESSURE RELIEF DEVICES .. 28
 7.1 General ... 28
 7.1.1 Overview .. 28
 7.1.2 PRD Interdependence with Fixed Equipment .. 28
 7.1.3 Failure Modes ... 28
 7.1.4 Use of Weibull Curves ... 29
 7.1.5 PRD Testing, Inspection and Repair .. 30
 7.1.6 PRD Overhaul or Replacement Start Date .. 30
 7.1.7 Risk Ranking of PRDs ... 30
 7.1.8 Link to Fixed or Protected Equipment .. 30
 7.2 Probability of Failure .. 31
 7.2.1 Definition .. 31
 7.2.2 Calculation of Probability of Failure to Open ... 31
 7.2.3 PRD Demand Rate ... 31
8.5.2 Risk Matrix ... 82
8.6 Inspection Planning Based on Risk Analysis ... 83
 8.6.1 Use of Risk Target in Inspection Planning .. 83
 8.6.2 Example ... 83
 8.6.3 Inspection Planning Without Inspection History (First Inspection Date) 83
 8.6.4 Inspection Planning with Inspection History ... 84
 8.6.5 Effects of Bundle Life Extension Efforts ... 86
 8.6.6 Future Inspection Recommendation .. 87
8.7 Bundle Inspect/Replacement Decisions using Cost Benefit Analysis 87
 8.7.1 General .. 87
 8.7.2 Decision to Inspect or Replace at Upcoming Shutdown 87
 8.7.3 Decision for Type of Inspection .. 88
 8.7.4 Optimal Bundle Replacement Frequency ... 88
8.8 Nomenclature .. 90
8.9 Tables ... 92
8.10 Figures ... 102
1 SCOPE

1.1 Purpose
This recommended practice provides quantitative procedures to establish an inspection program using risk-based methods for pressurized fixed equipment including pressure vessel, piping, tankage, pressure relief devices, and heat exchanger tube bundles. API RP 580 [1] provides guidance on developing a risk-based inspection program for fixed equipment in the refining and petrochemical, and chemical process plants. The intent of these publications is for API RP 580 to introduce the principles and present minimum general guidelines for RBI while this recommended practice provides quantitative calculation methods to determine an inspection plan.

1.2 Introduction
The calculation of risk in the Risk-Based Inspection (API RBI) methodology involves the determination of a probability of failure combined with the consequence of failure. Failure in API RBI is defined as a loss of containment from the pressure boundary resulting in leakage to the atmosphere or rupture of a pressurized component. As damage accumulates in a pressurized component during in-service operation the risk increases. At some point, a risk tolerance or risk target is exceeded and an inspection is recommended of sufficient effectiveness to better quantify the damage state of the component. The inspection action itself does not reduce the risk; however, it does reduce uncertainty thereby allowing better quantification of the damage present in the component.

1.3 Risk Management
In most situations, once risks have been identified, alternate opportunities are available to reduce them. However, nearly all major commercial losses are the result of a failure to understand or manage risk. API RBI takes the first step toward an integrated risk management program. In the past, the focus of risk assessment has been on on-site safety-related issues. Presently, there is an increased awareness of the need to assess risk resulting from:
 a) On-site risk to employees,
 b) Off-site risk to the community,
 c) Business interruption risks, and
 d) Risk of damage to the environment
The API RBI approach allows any combination of these types of risks to be factored into decisions concerning when, where, and how to inspect equipment.

The API RBI methodology may be used to manage the overall risk of a plant by focusing inspection efforts on the process equipment with the highest risk. API RBI provides the basis for managing risk by making an informed decision on inspection frequency, level of detail, and types of NDE. In most plants, a large percent of the total unit risk will be concentrated in a relatively small percent of the equipment items. These potential high-risk components may require greater attention, perhaps through a revised inspection plan. The cost of the increased inspection effort can sometimes be offset by reducing excessive inspection efforts in the areas identified as having lower risk. With an API RBI program in place, inspections will continue to be conducted as defined in existing working documents, but priorities and frequencies will be guided by the API RBI procedure.

API RBI is flexible and can be applied on several levels. Within this document, API RBI is applied to pressurized equipment containing process fluids. However, it may be expanded to the system level and include additional equipment, such as instruments, control systems, electrical distribution, and critical utilities. Expanded levels of analyses may improve the payback for the inspection efforts.

The API RBI approach can also be made cost-effective by integrating with recent industry initiatives and government regulations, such as Management of Process Hazards, Process Safety Management (OSHA 29 CFR 1910.119), or the proposed Environmental Protection Agency Risk Management Programs for Chemical Accident Release Prevention.