IEEE Guide for Testing Metal-Enclosed Switchgear Rated Up to 38 kV for Internal Arcing Faults

IEEE Power Engineering Society

Sponsored by the Switchgear Committee
IEEE Guide for Testing Metal-Enclosed Switchgear Rated Up to 38 kV for Internal Arcing Faults

Sponsor
Switchgear Committee of the IEEE Power Engineering Society

Approved 27 September 2007
IEEE-SA Standards Board
Abstract: A procedure for testing and evaluating the performance of metal-enclosed switchgear for internal arcing faults is covered. A method of identifying the capabilities of this equipment is given. Service conditions, installation, and application of equipment are also discussed.

Keywords: accessibility, arc, bus, compartment, internal arcing fault, metal-clad switchgear, metal-enclosed interrupter switchgear, metal-enclosed low-voltage power circuit breaker switchgear, metal-enclosed switchgear, overpressure, protection
IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus development process, approved by the American National Standards Institute, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and serve without compensation. While the IEEE administers the process and establishes rules to promote fairness in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy of any of the information contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or that the use of the material contained herein is free from patent infringement. IEEE Standards documents are supplied “AS IS.”

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration.

At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear that his or her views should be considered the personal views of that individual rather than the formal position, explanation, or interpretation of the IEEE.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
Piscataway, NJ 08854
USA

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.
Introduction

This introduction is not part of IEEE Std C37.20.7-2007, IEEE Guide for Testing Metal-Enclosed Switchgear Rated Up to 38 kV for Internal Arcing Faults.

The standards and guides in the IEEE C37™ series have been developed over a period of many years through the cooperative efforts of users, specifiers, manufacturers, and other interested parties. This edition of IEEE Std C37.20.7 includes a detailed application guide and improvements in the testing procedure. The development of this guide rests heavily on Annex AA of IEC 298-1981a and Amendment 1: 1994. This revision is harmonized with the IEC and incorporates many of the refinements made to the original IEC 298, as contained in the current IEC 62271-200 edition.

This revision reflects lessons learned from use of the previous 2001 version. This revision also extends the scope to include testing of low-voltage metal-enclosed power circuit breaker switchgear.

In the 1970s, principally in Europe, interest in evaluating electrical equipment under conditions of internal arcing emerged. As a result, a draft Annex AA to IEC 298 “A.C. Metal-Enclosed Switchgear and Controlgear for Rated Voltages Above 1kV and Up to and Including 52kV” was issued by the IEC in 1981 and revised in 1990. It was redesignated IEC 62271-200 and revised in 2003.

Knowledge of the arc resistance testing guide in IEC 298 spread to North America, and it was used as the basis for EEMAC G14-1, 1987, “Procedure for Testing the Resistance of Metal Clad Switchgear Under Conditions of Arcing Due to an Internal Fault.” EEMAC G14-1 incorporated improvements in knowledge and understanding in over a decade of use of Annex AA of IEC 298 in Europe.

Failure within a switchgear assembly, whether from a defect, an unusual service condition, lack of maintenance, or misoperation, may initiate an internal arc. There is little likelihood of an internal arc in equipment meeting the requirements of IEEE Std C37.20.1™-2002,b IEEE Std C37.20.2™-1999, or IEEE Std C37.20.3™-2001. There is even less likelihood of an internal arc in equipment that has insulated bus, compartmentalization, barriers, and interlocks, such as those described in IEEE Std C37.20.2-1999; however, the possibility cannot be disregarded completely. The intent of this guide is to address the testing procedure for internal arcing faults in metal-enclosed switchgear.

Even when arc-resistant construction is specified, it is strongly recommended that supplemental power system protection be provided. This supplemental protection should limit the total energy that can be delivered in the event of internal arcing faults. This protection can be provided in a variety of ways, depending on the nature of the system. Among the forms of protection that may be appropriate are current-limiting fuses, current-limiting circuit breakers, zone differential or bus differential relaying, ground differential protection, or arc-sensing systems sensitive to light or pressure effects that accompany internal arcing faults. The objective of such protection must be to cause the interruption of all sources of power to the arcing fault in a time interval that is shorter than the rated arcing duration capability demonstrated by the tests contained within this document (refer to 4.3).

a IEC publications are available from the Sales Department of the International Electrotechnical Commission, Case Postale 131, 3, rue de Varembé, CH-1211, Genève 20, Switzerland/Suisse (http://www.iec.ch/). IEC publications are also available in the United States from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY 10036, USA.

b IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, Piscataway, NJ 08854, USA (http://standards.ieee.org/).
In addition to supplemental power system protection, adequate personal protective equipment is required, as all hazards associated with an internal arcing fault are not eliminated when equipment tested to this guide is used.

Notice to users

Errata

Errata, if any, for this and all other standards can be accessed at the following URL: http://standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL for errata periodically.

Interpretations

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/index.html.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. The IEEE is not responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patents Claims or determining whether any licensing terms or conditions are reasonable or non-discriminatory. Further information may be obtained from the IEEE Standards Association.

Participants

At the time this guide was submitted to the IEEE-SA Standards Board for approval, the C37.20.7 Arc Resistant Switchgear Working Group had the following membership:

Michael Wactor, Chair
T. W. Olsen, Vice Chair

Charles J. Ball
P. Barnhart
Eldridge R. Byron
P. Dwyer
Nancy Gunderson
David J. Lemmerman
D. Mazumdar
Thomas McNamara
Miklos Orosz
Robert J. Puckett
Shaun Slattery*
James E. Smith
Jan Zawadzki

*Deceased
At the time this guide was submitted to the IEEE-SA Standards Board for approval, the Switchgear Assemblies Subcommittee of the IEEE Switchgear Committee had the following membership.

T. W. Olsen, Chair
Anne F. Morgan, Secretary

Charles J. Ball J. M. Jerabek G. R. Nourse
P. Barnhart Ward E. Laubach E. A. Peters
Ted A. Burse David J. Lemmerman Robert J. Puckett
Eldridge R. Byron Albert Livshitz James E. Smith
J. J. Dravis F. Mayle A. Storms
P. Dwyer D. Mazumdar Paul Sullivan
Doug J. Edwards W. C. McKay Stan H. Telander
S. S. Gohil Charles Allan Morse Michael Wactor
 Paul J. Notarian

*Deceased

The following members of the balloting committee voted on this guide. Balloters may have voted for approval, disapproval, or abstention.

Ali Al Awazi Keith Gray Paul J. Notarian
Marcos Andrade Randall Groves T. W. Olsen
Sabir Azizi-Ghannad Nancy Gunderson Miklos Orosz
Charles J. Ball Gary Heuston Neville Parry
Louis Barrios Edward Horgan Jr. Robert J. Puckett
W. J. (Bill) Bergman Dennis Horwitz Michael Roberts
Wallace Binder William Hurst James Ruggieri
Thomas Blair Richard Jackson Lawrence Salberg
William Bloethe Jose Jarque Vincent Saporita
Dieter Braun Yuri Khersonsky Carl Schneider
Steven Brockschink Joseph L. Koepfinger Devki Sharma
David Burns Stephen R. Lambert Shaun Slattery*
Ted A. Burse H. Melvin Smith
Thomas Callsen David J. Lemmerman James E. Smith
Mary Capelli-Schellpfeffer Boyd Leuenberger Allan St. Peter
Tommy Cooper Blane Leuschner James Stoner
R. Daubert Jason Lin Paul Sullivan
Matthew Davis Albert Livshitz Chand Tailor
Frank Denbrock Russell Lowe Stan H. Telander
Alexander Dixon Thomas Lundquist David Tepen
J. Frederick Doering Gregory Luri William Terry
Mark Drabkin Kyaw Myint Shanmugan Thamilarasan
Denis Dufournet Thomas McNamara Dennis Thongsard
Donald Dunn Nigel McQuin Donald Voltz
Douglas Edwards Steven Meiners Hemant Vora
Gary Engmann Gary Michel Michael Wactor
Jorge Fernández-Daher Georges Montillet Charles Wagner
Marcel Fortin Anne Morgan James Wilson
Kenneth Getman Charles Allan Morse Jim Wiseman
David Gilmer Jerry Murphy Larry Yonce
Douglas Giraud Michael Newman Jan Zawadzki
 Art Neubauer

*Deceased
When the IEEE-SA Standards Board approved this guide on 27 September 2007, it had the following membership:

Steve M. Mills, Chair
Robert M. Grow, Vice Chair
Don Wright, Past Chair
Judith Gorman, Secretary

Richard DeBlasio
Alex Gelman
William R. Goldbach
Arnold M. Greenspan
Joanna N. Guenin
Kenneth S. Hanus
William B. Hopf
Richard H. Hulett

Hermann Koch
Joseph L. Koepfinger*
John Kulick
David J. Law
Glenn Parsons
Ronald C. Petersen
Tom A. Prevost

Narayanan Ramachandran
Greg Ratta
Robby Robson
Anne-Marie Sahazizian
Virginia C. Sulzberger
Malcolm V. Thaden
Richard L. Townsend
Howard L. Wolfman

*Member Emeritus

Also included are the following nonvoting IEEE-SA Standards Board liaisons:

Satish K. Aggarwal, NRC Representative
Michael H. Kelley, NIST Representative

Jennie Steinhagen
IEEE Standards Program Manager, Document Development

Matthew J. Ceglia
IEEE Standards Program Manager, Technical Program Development
Contents

1. Overview .. 1
 1.1 Scope ... 1
 1.2 Background.. 1

2. Normative references.. 3

3. Definitions... 4

4. Ratings.. 5
 4.1 Accessibility type .. 5
 4.2 Internal arcing short-circuit current ... 5
 4.3 Arcing duration... 6

5. Tests ... 6
 5.1 Test arrangements.. 6
 5.2 Test conditions... 11
 5.3 Arc initiation... 16
 5.4 Indicators (for observing the thermal effects of gases)... 17

6. Assessment ... 20
 6.1 Assessment of test results .. 20
 6.2 Test report.. 21
 6.3 Nameplate .. 22

7. Application considerations ... 22
 7.1 Potential areas for arcing ... 22
 7.2 Design changes... 22
 7.3 Equipment maintenance... 22

Annex A (informative) Optional performance features.. 23

Annex B (informative) Application guide.. 27

Annex C (informative) Bibliography.. 37
IEEE Guide for Testing Metal-Enclosed Switchgear Rated Up to 38 kV for Internal Arcing Faults

1. Overview

1.1 Scope

This guide establishes methods by which metal-enclosed switchgear, as defined by IEEE Std C37.20.1TM-2002, IEEE Std C37.20.2™-1999, and IEEE Std C37.20.3™-2001, may be tested for resistance to the effects of arcing due to an internal fault. This guide applies only to equipment utilizing air as the primary insulating medium and rated up to 38 kV ac. It applies to both indoor and outdoor equipment; however, special consideration must be given to the building size and construction for indoor applications (not addressed by this document).

The tests and assessments described in this guide are only applicable to arcing faults occurring entirely in air within the enclosure when all doors and covers are properly secured. This guide does not apply to arcing faults that occur within components of the switchgear assembly, such as instrument transformers, sealed interrupting devices, fuses, and so on.

Switchgear designs that meet the requirements of this guide will be referred to as arc-resistant, metal-enclosed low-voltage ac power circuit breaker switchgear, arc-resistant metal-enclosed interrupter switchgear, or arc-resistant metal-clad switchgear as applicable, or generally, as arc-resistant switchgear.

1.2 Background

1.2.1 Consequences of internal arc faults

Metal-enclosed switchgear is designed to withstand the worst-case mechanical forces between conductors, which occur when a short circuit occurs directly on the load terminals of the switchgear. This condition is referred to as a “bolted fault” in IEEE Std C37.100™-1992. The ability of metal-enclosed switchgear to withstand the effects of the bolted fault is demonstrated in the Short-Time Withstand Current Tests and in the Momentary Withstand Current Tests in IEEE Std C37.20.2-1999 and IEEE Std C37.20.3-2001 or the...