IEEE Std 493™-2007
(Revision of IEEE Std 493-1997)
IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems

Sponsor
Power Systems Reliability Subcommittee of the Power Systems Engineering Committee of the IEEE Industry Applications Society

Approved 7 February 2007
IEEE-SA Standards Board
Abstract: The fundamentals of reliability analysis as it applies to the planning and design of industrial and commercial electric power distribution systems are presented. Included are basic concepts of reliability analysis by probability methods, fundamentals of power system reliability evaluation, economic evaluation of reliability, cost of power outage data, equipment reliability data, and examples of reliability analysis. Emergency and standby power, electrical preventive maintenance, and evaluating and improving reliability of the existing plant are also addressed. The presentation is self-contained and should enable trade-off studies during the design of industrial and commercial power systems. Design, installation, maintenance practices for electrical power and grounding (including both power-related and signal-related noise control) of sensitive electronic processing equipment used in commercial and industrial applications are presented.

Keywords: designing reliable industrial and commercial power systems, equipment reliability data, industrial and commercial power systems reliability analysis, reliability analysis
Acknowledgments

Grateful acknowledgment is made to the following for having granted permission to reprint material in this document:

Alion Science and Technology, System Acquisition and Supportability Division, Chapter 5.

HDR Engineering Inc., Chapter 4.

Don O. Koval, University of Alberta, Chapters 1, 3, and 9.

Pat O'Donnell, Chapter 6.

SoftSwitching Technologies Corporation, Chapter 7.
IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus development process, approved by the American National Standards Institute, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and serve without compensation. While the IEEE administers the process and establishes rules to promote fairness in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy of any of the information contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or that the use of the material contained herein is free from patent infringement. IEEE Standards documents are supplied “AS IS.”

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration. At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear that his or her views should be considered the personal views of that individual rather than the formal position, explanation, or interpretation of the IEEE.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
Piscataway, NJ 08854
USA

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.
Introduction

The objective of this recommended practice is to present the fundamentals of reliability analysis applied to the planning and design of industrial and commercial electric power distribution systems. The intended audience for this material is primarily consulting engineers and plant engineers, and technicians. The design of reliable industrial and commercial power distribution systems is important because of the high cost associated with power outages. It is necessary to consider the cost of power outages when making design decisions for new and existing power distribution systems as well as to have the ability to make quantitative “cost-versus-reliability” trade-off studies. The lack of credible data concerning equipment reliability and the cost of power outages has hindered engineers in making such studies. This revision of IEEE Std 493™ overcomes these obstacles by providing extensive mechanical and electrical equipment reliability data; complete U.S. Army Corp of Engineers Power Reliability Enhancement Program (PREP) database, recent cost of power outage data, data collection procedures for maintenance and equipment failures, 7 \times 24 continuous power analysis, and voltage sag analysis are presented. Detailed examples of reliability analysis of various industrial distribution system operating configurations are presented. The authors of this book have attempted to provide sufficient information so that reliability analyses can be performed on industrial and commercial power systems without requiring cross-references to other texts.

Notice to users

Errata

Errata, if any, for this and all other standards can be accessed at the following URL: http://standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL for errata periodically.

Interpretations

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/index.html.

Patents

Attention is called to the possibility that implementation of this recommended practice may require use of subject matter covered by patent rights. By publication of this recommended practice, no position is taken with respect to the existence or validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying patents or patent applications for which a license may be required to implement an IEEE
recommended practice or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Participants

The following members of the Gold Book Working Group of the Power Systems Reliability Subcommittee contributed to these chapters:

D. O. Koval, Chair
Robert G. Arno, Vice Chair

Chapter 1: Introduction—D. O. Koval, Chair

Chapter 2: Basic concepts of reliability—Brian Roczen, Chair

Chapter 3: Planning and design—D. O. Koval, Chair

Chapter 4: Evaluating and improving the reliability of an existing electrical system—Tim Coyle, Chair

Chapter 5: Preventative maintenance—Robert G. Arno, Chair

Chapter 6: Emergency and standby power—Pat O’Donnell, Chair

Chapter 7: Voltage sag analysis—William E. Brumsickle, Chair

Chapter 8: 7 × 24 continuous power facilities—Robert J. Schuerger, Chair

Chapter 9: Reliability and maintainability verification—D. O. Koval, Chair

Chapter 10: Summary of equipment reliability data—Robert G. Arno, Chair

Chapter 11: Data collection—Robert G. Arno, Chair

Other members of the working group who contributed to the development of the 2007 version of this recommended practice are as follows:

William F. Braun, Jr. Peter Gross Charles R. Heising

The Gold Book Working Group acknowledges and wholeheartedly thanks Helen L. Garfinkle for her meticulous editorial work on this recommended practice. Her patience and exceptional organizational skills pushed this project along quickly and without incident. Both the IEEE Standards Association and the Gold Book Working Group are grateful for her expertise.
The following members of the individual balloting committee voted on this recommended practice. Balloters may have voted for approval, disapproval, or abstention.

<table>
<thead>
<tr>
<th>William J. Ackerman</th>
<th>F. A. Denbrock</th>
<th>Jerry R. Murphy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gary E. Arntson</td>
<td>J. P. Discullo</td>
<td>Dennis K. Neitzel</td>
</tr>
<tr>
<td>Ali Al Awazi</td>
<td>Carlo Donati</td>
<td>Michael S. Newman</td>
</tr>
<tr>
<td>William H. Bartley</td>
<td>Neal B. Dowling, Jr.</td>
<td>Lorraine K. Padden</td>
</tr>
<tr>
<td>Thomas S. Basso</td>
<td>Donald G. Dunn</td>
<td>Donald M. Parker</td>
</tr>
<tr>
<td>David C. Beach</td>
<td>Gary R. Engmann</td>
<td>Julian E. Profir</td>
</tr>
<tr>
<td>Wallace B. Binder, Jr.</td>
<td>Dan Evans</td>
<td>John E. Propst</td>
</tr>
<tr>
<td>Thomas H. Bishop</td>
<td>Keith Flowers</td>
<td>Michael A. Roberts</td>
</tr>
<tr>
<td>Thomas H. Blair</td>
<td>Carl J. Fredericks</td>
<td>Charles W. Rogers</td>
</tr>
<tr>
<td>William G. Bloethe</td>
<td>Frank J. Gerleve</td>
<td>M. S. Sachdev</td>
</tr>
<tr>
<td>Stuart H. Bouchev</td>
<td>Randall C. Groves</td>
<td>Steven Sano</td>
</tr>
<tr>
<td>William F. Braun, Jr.</td>
<td>Thomas M. Gruzs</td>
<td>Vincent Saporita</td>
</tr>
<tr>
<td>Steven R. Brockschink</td>
<td>Adrienne M. Hendrickson</td>
<td>Bartien Sayogo</td>
</tr>
<tr>
<td>Chris Brooks</td>
<td>Michael Henry</td>
<td>Thomas Schossig</td>
</tr>
<tr>
<td>William E. Brumbsickle</td>
<td>Werner Hoelzl</td>
<td>Robert J. Schuerger</td>
</tr>
<tr>
<td>Gustavo A. Brunello</td>
<td>Dennis Horwitz</td>
<td>Kenneth S. Sedziol</td>
</tr>
<tr>
<td>William A. Byrd</td>
<td>Ronald W. Hotchkiss</td>
<td>Michael A. Shirven</td>
</tr>
<tr>
<td>Eldridge R. Byron</td>
<td>John A. Houdek</td>
<td>Hyeong J. Sim</td>
</tr>
<tr>
<td>Antonio Cardoso</td>
<td>Jose A. Jarque</td>
<td>Herbert J. Sinnock</td>
</tr>
<tr>
<td>Thomas Carpenter</td>
<td>James H. Jones</td>
<td>Cameron L. Smallwood</td>
</tr>
<tr>
<td>James S. Case</td>
<td>Javeed A. Khan</td>
<td>Jerry W. Smith</td>
</tr>
<tr>
<td>Weijen Chen</td>
<td>D. O. Koval</td>
<td>Devendra K. Soni</td>
</tr>
<tr>
<td>Danila Chernetsov</td>
<td>Jim Kulchisky</td>
<td>Paul B. Sullivan</td>
</tr>
<tr>
<td>Keith Chow</td>
<td>Saumen K. Kundu</td>
<td>Peter E. Sutherland</td>
</tr>
<tr>
<td>Bryan R. Cole</td>
<td>Scott R. Lacy</td>
<td>S. Thamilarasan</td>
</tr>
<tr>
<td>Stephen P. Conrad</td>
<td>Chung-Yiu Lam</td>
<td>David R. Willow</td>
</tr>
<tr>
<td>Tommy P. Cooper</td>
<td>Jason Jy-Shung Lin</td>
<td>James W. Wilson, Jr.</td>
</tr>
<tr>
<td>Stephen Dare</td>
<td>Albert Livshitz</td>
<td>Donald W. Zipse</td>
</tr>
<tr>
<td>Matthew T. Davis</td>
<td>G. L. Luri</td>
<td>Ahmed F. Zobaa</td>
</tr>
</tbody>
</table>
When the IEEE-SA Standards Board approved this recommended practice on 7 February 2007, it had the following membership:

Steve M. Mills, Chair
Richard H. Hulett, Vice Chair
Don Wright, Past Chair
Judith Gorman, Secretary

Mark D. Bowman
Dennis B. Brophy
William R. Goldbach
Arnold M. Greenspan
Robert M. Grow
Joanna N. Guenin
Julian Forster*
Mark S. Halpin
Kenneth S. Hanus
William B. Hopf
Joseph L. Koepfinger*
David J. Law
Daleep C. Mohla
T. W. Olsen
Glenn Parsons
Ronald C. Petersen
Tom A. Prevost
Greg Ratta
Robby Robson
Anne-Marie Sahazizian
Virginia C. Sulzberger
Malcolm V. Thaden
Richard L. Townsend
Walter Weigel
Howard L. Wolfman

*Member Emeritus

Also included are the following nonvoting IEEE-SA Standards Board liaisons:

Satish K. Aggarwal, *NRC Representative*
Richard DeBlasio, *DOE Representative*
Alan H. Cookson, *NIST Representative*

Don Messina
IEEE Standards Project Editor

Patricia A. Gerdon
IEEE Standards Program Manager, Technical Program Development
Chapter 1
Introduction

1.1 Objectives and scope

The objective of this book is to present the fundamentals of reliability analysis applied to the planning and design of industrial and commercial electric power distribution systems. The intended audience for this material is primarily consulting engineers and plant electrical engineers and technicians.

The design of reliable industrial and commercial power distribution systems is important because of the high cost associated with power outages. It is necessary to consider the cost of power outages when making design decisions for new power distribution systems as well as to have the ability to make quantitative “cost-versus-reliability” trade-off studies. The lack of credible data concerning equipment reliability and the cost of power outages has hindered engineers in making such studies. This revision of IEEE Std 493™ overcomes these obstacles.

The authors of this book have attempted to provide sufficient information so that reliability analyses can be performed on industrial and commercial power systems without requiring cross-references to other texts. Included are the following:

— Basic concepts of reliability analysis by probability methods
— Fundamentals of power system reliability evaluation
— Economic evaluation of reliability
— Recent cost of power outage data
— New extensive mechanical and electrical equipment reliability data—Complete U.S. Army Corp of Engineers Power Reliability Enhancement Program (PREP) database
— Examples of reliability analysis of various industrial distribution system operating configurations
— 7 × 24 continuous power
— Voltage sag analysis