IEEE Standard for System, Software, and Hardware Verification and Validation

IEEE Computer Society

Sponsored by the Software and Systems Engineering Standards Committee
IEEE Standard for System, Software, and Hardware Verification and Validation

Sponsor

Software and Systems Engineering Standards Committee of the IEEE Computer Society

Approved 28 September 2017

IEEE-SA Standards Board
Abstract: Verification and validation (V&V) processes are used to determine whether the development products of a given activity conform to the requirements of that activity and whether the product satisfies its intended use and user needs. V&V life cycle process requirements are specified for different integrity levels. The scope of V&V processes encompasses systems, software, and hardware, and it includes their interfaces. This standard applies to systems, software, and hardware being developed, maintained, or reused (legacy, commercial off-the-shelf [COTS], non-developmental items). The term software also includes firmware and microcode, and each of the terms system, software, and hardware includes documentation. V&V processes include the analysis, evaluation, review, inspection, assessment, and testing of products.

Keywords: acceptance testing, architecture evaluation, component testing, concept documentation evaluation, criticality, criticality analysis, design evaluation, disposal plan evaluation, environmental verification and validation (V&V) factors, hardware life cycle, hardware V&V, hardware verification and validation, hazard analysis, IEEE 1012, implementation evaluation, independent verification and validation (IV&V), integration testing, integrity level, interface analysis, IV&V, minimum V&V tasks, nth of a kind, objective evidence, operating procedure evaluation, qualification testing, quality assurance, regression analysis, regression testing, requirements allocation analysis, requirements evaluation, reuse software, risk analysis, security analysis, software life cycle, software quality assurance (SQA), software V&V, software verification and validation, source code documentation evaluation, source code evaluation, SQA, stakeholder needs and requirements evaluation, system element interaction analysis, system life cycle, system maintenance strategy assessment, system of interest, system requirements evaluation, system V&V, system verification and validation, testing, traceability analysis, V&V, V&V measures, validation, verification
Important Notices and Disclaimers Concerning IEEE Standards Documents

IEEE documents are made available for use subject to important notices and legal disclaimers. These notices and disclaimers, or a reference to this page, appear in all standards and may be found under the heading “Important Notices and Disclaimers Concerning IEEE Standards Documents.” They can also be obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/disclaimers.html.

Notice and Disclaimer of Liability Concerning the Use of IEEE Standards Documents

IEEE Standards documents (standards, recommended practices, and guides), both full-use and trial-use, are developed within IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (“IEEE-SA”) Standards Board. IEEE (“the Institute”) develops its standards through a consensus development process, approved by the American National Standards Institute (“ANSI”), which brings together volunteers representing varied viewpoints and interests to achieve the final product. IEEE Standards are documents developed through scientific, academic, and industry-based technical working groups. Volunteers in IEEE working groups are not necessarily members of the Institute and participate without compensation from IEEE. While IEEE administers the process and establishes rules to promote fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the accuracy of any of the information or the soundness of any judgments contained in its standards.

IEEE Standards do not guarantee or ensure safety, security, health, or environmental protection, or ensure against interference with or from other devices or networks. Implementers and users of IEEE Standards documents are responsible for determining and complying with all appropriate safety, security, environmental, health, and interference protection practices and all applicable laws and regulations.

IEEE does not warrant or represent the accuracy or content of the material contained in its standards, and expressly disclaims all warranties (express, implied and statutory) not included in this or any other document relating to the standard, including, but not limited to, the warranties of: merchantability; fitness for a particular purpose; non-infringement; and quality, accuracy, effectiveness, currency, or completeness of material. In addition, IEEE disclaims any and all conditions relating to: results; and workmanlike effort. IEEE standards documents are supplied “AS IS” and “WITH ALL FAULTS.”

Use of an IEEE standard is wholly voluntary. The existence of an IEEE standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity nor is IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing any IEEE Standards document, should rely upon his or her own independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate, seek the advice of a competent professional in determining the appropriateness of a given IEEE standard.

IN NO EVENT SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO: PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE UPON ANY STANDARD, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.
Translations

The IEEE consensus development process involves the review of documents in English only. In the event that an IEEE standard is translated, only the English version published by IEEE should be considered the approved IEEE standard.

Official statements

A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board Operations Manual shall not be considered or inferred to be the official position of IEEE or any of its committees and shall not be considered to be, or be relied upon as, a formal position of IEEE. At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear that his or her views should be considered the personal views of that individual rather than the formal position of IEEE.

Comments on standards

Comments for revision of IEEE Standards documents are welcome from any interested party, regardless of membership affiliation with IEEE. However, IEEE does not provide consulting information or advice pertaining to IEEE Standards documents. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Since IEEE standards represent a consensus of concerned interests, it is important that any responses to comments and questions also receive the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to comments or questions except in those cases where the matter has previously been addressed. For the same reason, IEEE does not respond to interpretation requests. Any person who would like to participate in revisions to an IEEE standard is welcome to join the relevant IEEE working group.

Comments on standards should be submitted to the following address:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
Piscataway, NJ 08854 USA

Laws and regulations

Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with the provisions of any IEEE Standards document does not imply compliance to any applicable regulatory requirements. Implementers of the standard are responsible for observing or referring to the applicable regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

IEEE draft and approved standards are copyrighted by IEEE under U.S. and international copyright laws. They are made available by IEEE and are adopted for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of engineering practices and methods. By making these documents available for use and adoption by public authorities and private users, IEEE does not waive any rights in copyright to the documents.
Photocopies

Subject to payment of the appropriate fee, IEEE will grant users a limited, non-exclusive license to photocopy portions of any individual standard for company or organizational internal use or individual, non-commercial use only. To arrange for payment of licensing fees, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.

Updating of IEEE Standards documents

Users of IEEE Standards documents should be aware that these documents may be superseded at any time by the issuance of new editions or may be amended from time to time through the issuance of amendments, corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the document together with any amendments, corrigenda, or errata then in effect.

Every IEEE standard is subjected to review at least every ten years. When a document is more than ten years old and has not undergone a revision process, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE standard.

In order to determine whether a given document is the current edition and whether it has been amended through the issuance of amendments, corrigenda, or errata, visit the IEEE-SA Website at http://ieeexplore.ieee.org/xpl/standards.jsp or contact IEEE at the address listed previously. For more information about the IEEE-SA or IEEE’s standards development process, visit the IEEE-SA Website at http://standards.ieee.org.

Errata

Errata, if any, for all IEEE standards can be accessed on the IEEE-SA Website at the following URL: http://standards.ieee.org/findstds/errata/index.html. Users are encouraged to check this URL for errata periodically.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect to the existence or validity of any patent rights in connection therewith. If a patent holder or patent applicant has filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed on the IEEE-SA Website at http://standards.ieee.org/about/sasb/patcom/patents.html. Letters of Assurance may indicate whether the Submitter is willing or unwilling to grant licenses under patent rights without compensation or under reasonable rates, with reasonable terms and conditions that are demonstrably free of any unfair discrimination to applicants desiring to obtain such licenses.

Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further information may be obtained from the IEEE Standards Association.
Participants

IEEE Std 1012-2016

At the time IEEE Std 1012-2016 was completed, the P1012 Working Group had the following membership:

Roger U. Fujii, Chair

Michael E. Waterman, Vice Chair

Edward A. Addy, Secretary

<table>
<thead>
<tr>
<th>Rossnyev Alvarado</th>
<th>David H. Daniel</th>
<th>Charles R. Martin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steven Baird, Jr.</td>
<td>Harpal Dhama</td>
<td>Robert R. Moniri</td>
</tr>
<tr>
<td>Arde Bedjanian</td>
<td>Ronald F. Dean, Sr.</td>
<td>Owen Nelson</td>
</tr>
<tr>
<td>Luis Betancourt</td>
<td>Jun Ding</td>
<td>Adefeyike Odutayo</td>
</tr>
<tr>
<td>Susan M. Burgess</td>
<td>Stephen Driskell</td>
<td>Stan Potoczny</td>
</tr>
<tr>
<td>Tiffany Burgess</td>
<td>Eva Freund</td>
<td>William Roggenbrodt</td>
</tr>
<tr>
<td>William Burgess</td>
<td>Jon D. Hagar</td>
<td>Shirley A. Savarino</td>
</tr>
<tr>
<td>Norbert Carte</td>
<td>Libing He</td>
<td>Scott W. Schield</td>
</tr>
<tr>
<td>Lisa Castelli</td>
<td>Yanjun He</td>
<td>Li Shi</td>
</tr>
<tr>
<td>Jiayu Chen</td>
<td>John W. Hefer</td>
<td>Maryna Y. Senechal</td>
</tr>
<tr>
<td>Larry Chi</td>
<td>David Hooten</td>
<td>Yichun Wu</td>
</tr>
<tr>
<td>Ivan Chow</td>
<td>George R. Hughes</td>
<td>Steve Yang</td>
</tr>
<tr>
<td>Pong C. Chung</td>
<td>Yu-chih Ko</td>
<td>Xiaobai Yu</td>
</tr>
<tr>
<td>Darrell Cooksey</td>
<td>Thomas M. Kurihara</td>
<td></td>
</tr>
<tr>
<td>Ken Costello</td>
<td>Lingpo Li</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gang Ma</td>
<td></td>
</tr>
</tbody>
</table>

The following members of the individual balloting committee voted on this standard. Balloters may have voted for approval, disapproval, or abstention.

<table>
<thead>
<tr>
<th>Edward A. Addy</th>
<th>Jon D. Hagar</th>
<th>Terence Rout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Aiello</td>
<td>John Harauz</td>
<td>Bartien Sayogo</td>
</tr>
<tr>
<td>Johann Amsenga</td>
<td>David Herrell</td>
<td>Robert Schaaf</td>
</tr>
<tr>
<td>T. Scott Ankrum</td>
<td>Werner Hoelzl</td>
<td>Hans Schaefer</td>
</tr>
<tr>
<td>Lee Armstrong</td>
<td>Bernard Homes</td>
<td>Scott W. Schield</td>
</tr>
<tr>
<td>Steven Baird, Jr.</td>
<td>George R. Hughes</td>
<td>Maud Schlich</td>
</tr>
<tr>
<td>Bakul Banerjee</td>
<td>Theresa Hunt</td>
<td>Stephen Schwarm</td>
</tr>
<tr>
<td>Pieter Botman</td>
<td>Noriyuki Ikeuchi</td>
<td>Carl Singer</td>
</tr>
<tr>
<td>Susan M. Burgess</td>
<td>Atsushi Ito</td>
<td>James Sivak</td>
</tr>
<tr>
<td>Juan Carreon</td>
<td>Mark Jaeger</td>
<td>Michael Smith</td>
</tr>
<tr>
<td>Sue Carroll</td>
<td>Paul Joannou</td>
<td>Thomas Starai</td>
</tr>
<tr>
<td>Keith Chow</td>
<td>Cheryl Jones</td>
<td>Walter Struppler</td>
</tr>
<tr>
<td>Raul Colcher</td>
<td>Piot Karocki</td>
<td>Gerald Stueve</td>
</tr>
<tr>
<td>Paul Croll</td>
<td>Yuri Khersonsky</td>
<td>Marcy Stutzman</td>
</tr>
<tr>
<td>Geoffrey Darnton</td>
<td>Thomas M. Kurihara</td>
<td>Thomas Tullia</td>
</tr>
<tr>
<td>Ronald F. Dean, Sr.</td>
<td>Susan Land</td>
<td>Maryan Y. Tyrpak</td>
</tr>
<tr>
<td>Grazia D’Elia</td>
<td>David Leciston</td>
<td>Mark-Rene Uchida</td>
</tr>
<tr>
<td>Harpal Dhama</td>
<td>Edward McCall</td>
<td>Murat S. Uzman</td>
</tr>
<tr>
<td>Teresa Doran</td>
<td>James Moore</td>
<td>John Vergis</td>
</tr>
<tr>
<td>Sourav Dutta</td>
<td>Michael Newman</td>
<td>David Walden</td>
</tr>
<tr>
<td>Andrew Fieldsend</td>
<td>Warren Odess-Gillet</td>
<td>Michael E. Waterman</td>
</tr>
<tr>
<td>Eva Freund</td>
<td>James Pritchett</td>
<td>Stephen Webb</td>
</tr>
<tr>
<td>David Friscia</td>
<td>Iulian Profir</td>
<td>Steve Yang</td>
</tr>
<tr>
<td>Roger U. Fujii</td>
<td>Laura Pullum</td>
<td>Jian Yu</td>
</tr>
<tr>
<td>David Fuschi</td>
<td>Annette Reilly</td>
<td>Oren Yuen</td>
</tr>
<tr>
<td>Gregg Giesler</td>
<td>Robert Robinson</td>
<td>Shuhui Zhang</td>
</tr>
<tr>
<td>Randall Groves</td>
<td></td>
<td>Daidi Zhong</td>
</tr>
</tbody>
</table>

Copyright © 2017 IEEE. All rights reserved.
When the IEEE-SA Standards Board approved this standard on 15 May 2016, it had the following membership:

Jean-Philippe Faure, Chair
Ted Burse, Vice Chair
John D. Kulick, Past Chair
Konstantinos Karachalios, Secretary

<table>
<thead>
<tr>
<th>Member</th>
<th>Member</th>
<th>Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chuck Adams</td>
<td>Michael Janeic</td>
<td>Mehmet Ulema</td>
</tr>
<tr>
<td>Masayuki Ariyoshi</td>
<td>Joseph L. Koepfinger*</td>
<td>Yingli Wen</td>
</tr>
<tr>
<td>Stephen Dukes</td>
<td>Hung Ling</td>
<td>Philip Winston</td>
</tr>
<tr>
<td>Jianbin Fan</td>
<td>Kevin Lu</td>
<td>Howard Wolfman</td>
</tr>
<tr>
<td>J. Travis Griffith</td>
<td>Annette D. Reilly</td>
<td>Don Wright</td>
</tr>
<tr>
<td>Gary Hoffman</td>
<td>Gary Robinson</td>
<td>Yu Yuan</td>
</tr>
<tr>
<td>Ronald W. Hotchkiss</td>
<td></td>
<td>Daidi Zhong</td>
</tr>
</tbody>
</table>

*Member Emeritus
Participants
IEEE Std 1012-2016/Cor1-2017

At the time IEEE Std 1012-2016/Cor1-2017 was completed, the P1012 Working Group had the following membership:

Roger U. Fujii, Chair
Michael E. Waterman, Vice Chair
Edward A. Addy, Secretary

Rossnyev Alvarado
Steven Baird, Jr.
Arde Bedjanian
Luis Betancourt
Susan M. Burgess
Tiffany Burgess
William Burgess
Norbert Carte
Lisa Castelli
Jiayu Chen
Larry Chi
Ivan Chow
Pong C. Chung
Darrell Cooksey
Ken Costello
David H. Daniel

Harpal Dhama
Ronald F. Dean, Sr.
Jun Ding
Stephen Driskell
Eva Freund
Dirk Guijt
Jon D. Hagar
Libing He
Yanjun He
John W. Hefer
David Hooten
George R. Hughes
Yu-chih Ko
Thomas M. Kurihara
Lingpo Li

Gang Ma
Charles R. Martin
Robert R. Moniri
Owen Nelson
Adefeyike Odutayo
Stan Potozny
William Roggenbrodt
Shirley A. Savarino
Scott W. Schield
Raymond R. Senechal
Li Shi
Maryna Y. Tyrpak
Murat S. Uzman
Yichun Wu
Steve Yang
Xiaobai Yu

The following members of the individual balloting committee voted on Corrigendum 1 of this standard. Balloters may have voted for approval, disapproval, or abstention.

Edward Addy
Robert Aiello
Johann Amsegna
Steven Baird, Jr.
Ulas Baloglu
Patti Brideson
Demetrio Bucaneg, Jr.
Paul Cardinal
Juan Carreon
Keith Chow
Paul Croll
Ronald F. Dean, Sr.
Sourav Dutta
Dale Dzielski
Eva Freund
David Friscia
Roger Fujii
David Fuschi
Randall Groves
Louis Gullo
Jon D. Hagar
John Harauz

Mark Henley
David Herrell
Frank Hill
Werner Hoelzel
Bernard Homes
Noriyuki Ikeuchi
Atsushi Ito
Cheryl Jones
Piotr Karocki
Thomas M. Kurihara
George Kyle
David Lecistin
Claire Lohr
Ignacio Marin-Garcia
Edward McCall
Andrew Nacc
Michael Newman
James Pritchett
Annette D. Reilly
Robert Robinson
Terence Rout

Robert Schaaf
Hans Schaefer
Scott W. Schield
Maud Schlich
Stephen Schwarm
Raymond R. Senechal
Carl Singer
Michael Smith
Kendall Southwick
Luca Spotorno
Thomas Starai
John Stevens
Walter Struppler
Vincent Tume
Maryna Y. Tyrpak
Mark-Rene Uchida
Murat S. Uzman
John Vergis
David Walden
Jian Yu
Oren Yuen
Shuhui Zhang
When the IEEE-SA Standards Board approved this standard on 28 September 2017, it had the following membership:

Jean-Philippe Faure, Chair
Gary Hoffman, Vice Chair
John D. Kulick, Past Chair
Konstantinos Karachalios, Secretary

Chuck Adams
Masayuki Ariyoshi
Ted Burse
Stephen Dukes
Doug Edwards
J. Travis Griffith
Michael Janezic
Thomas Koshy
Joseph L. Koepfinger*
Kevin Lu
Daleep Mohla
Damir Novosel
Ronald C. Petersen
Annette D. Reilly
Robby Robson
Dorothy Stanley
Adrian Stephens
Mehmet Ulema
Phil Wennblom
Howard Wolfman
Yu Yuan

*Member Emeritus
Introduction

This introduction is not part of IEEE Std 1012™-2016, IEEE Standard for System, Software, and Hardware Verification and Validation.

The Verification and Validation processes are technical processes of systems, software, and hardware engineering. The Verification process and the Validation process are interrelated and complementary processes, and are referenced together as verification and validation (V&V). The purpose of V&V is to help the organization build quality into the system during the life cycle. V&V processes provide an objective assessment of products and processes throughout the life cycle. This assessment demonstrates whether the requirements are correct, complete, accurate, consistent, and testable. The V&V processes determine whether the development products of a given activity conform to the requirements of that activity and whether the product satisfies its intended use and user needs. The determination includes the assessment, analysis, evaluation, review, inspection, and testing of products and processes. V&V is performed in parallel with all life cycle stages, not at their conclusion.

V&V is an extension of program management and systems, software, and hardware engineering that employs a rigorous methodology to identify objective data and conclusions to provide feedback about quality, performance, and schedule to the supplier. This feedback consists of anomaly resolutions, performance improvements, and quality improvements not only for expected operating conditions but also across the full spectrum of the system and its interfaces. Early feedback results allow the organization to modify the products in a timely fashion and thereby reduce overall project and schedule impacts. Without a proactive approach, the anomalies and associated system changes are typically delayed to later in the program schedule, resulting in greater program costs and schedule delays.

IEEE Std 1012 is a process standard that defines the V&V processes in terms of specific activities and related tasks. The standard also defines the contents of the V&V plan (VVP), including example formats.

V&V may be performed at the level of the system, software element, or hardware element, or on any combination of these. V&V may also be performed on an element of a system, including a subordinate system (i.e., subsystem). Throughout this standard, the term hardware means an electronic or mechanical hardware element. In each case, the V&V processes are invoked, either in parallel or recursively, across the full life cycle of the system or element.

This version of the standard is a revision to IEEE Std 1012-2012 [B5]. The earliest version of this standard (1986) described the content of a software V&V plan, with subsequent versions (1998 and 2004) changing the focus from the software V&V plan to software V&V processes. The 2012 revision expanded the scope of the V&V processes to include systems and hardware as well as software. This revision aligns more completely with the terminology and structure of ISO/IEC/IEEE 15288:2015(E) [B16] and ISO/IEC 12207:2008 [B11]. The following is a summary of the changes made in this version:

— No new V&V activities or tasks have been added other than to address the new or modified processes from ISO/IEC/IEEE 15288:2015(E) [B16], and conformance to this standard can be readily aligned with conformance to the V&V clauses of ISO/IEC/IEEE 15288. Some V&V activities and tasks have been rearranged to facilitate understanding and ease of use.

— The terminology, structure, and mappings were revised to be consistent with ISO/IEC/IEEE 15288:2015(E) [B16].

The following key concepts are emphasized in this standard:

— Integrity levels. Defines four integrity levels to describe the importance of the system, software, and hardware, varying from high integrity to low integrity, to the user.

1 The numbers in brackets correspond to those of the bibliography in Annex N.
— Minimum V&V tasks for each integrity level. Defines the minimum V&V tasks required for each of the four integrity levels.

— Optional V&V tasks. Includes a table of optional V&V tasks for tailoring the V&V effort to address the project needs and application-specific characteristics.

— Intensity and rigor applied to V&V tasks. Includes the concept that the intensity and rigor applied to the V&V tasks vary according to the integrity level. Higher integrity levels require the application of greater intensity and rigor to the V&V task. Intensity includes a greater scope of analysis across all normal and abnormal system operating conditions. Rigor includes more formal techniques and recording procedures.

— Detailed criteria for V&V tasks. Defines specific criteria for each V&V task, including minimum criteria for correctness, consistency, completeness, accuracy, readability, and testability. The V&V task descriptions include a list of the required task inputs and outputs.

— Systems viewpoints. Includes minimum software and hardware V&V tasks to address system issues. These tasks include hazard analysis, security analysis, risk analysis, migration assessment, and retirement assessment. Specific system issues are contained in individual V&V task criteria.

— Conformance to international and IEEE standards. Defines the V&V processes to conform to life cycle process standards such as ISO/IEC/IEEE 15288:2015(E) [B16] and ISO/IEC 12207:2008 [B11], as well as the entire family of IEEE software engineering standards. This standard addresses all system and software life cycle processes, including the Agreement, Organizational Project-Enabling, Project, Technical, Software Implementation, Software Support, and Software Reuse process groups. This standard is compatible with all life cycle models; however, not all life cycle models use all of the life cycle processes described in this standard.
Contents

1. Overview ... 15
 1.1 Scope ... 15
 1.2 Purpose ... 16
 1.3 Field of application ... 17
 1.4 V&V objectives ... 18
 1.5 Organization of the standard ... 18
 1.6 Audience .. 21
 1.7 Conformance .. 21
 1.8 Disclaimer ... 21

2. Normative references ... 22

3. Definitions and acronyms .. 22
 3.1 Definitions ... 22
 3.2 Acronyms .. 26

4. Relationships between verification and validation (V&V) and life cycle processes 27

5. Integrity levels ... 32

6. V&V process overview ... 34
 6.1 General ... 34
 6.2 V&V testing ... 35

7. Common V&V processes .. 37
 7.1 V&V management process ... 37
 7.2 Acquisition Support V&V process ... 38
 7.3 Supply Planning V&V process .. 39
 7.4 Project Planning V&V process .. 39
 7.5 Configuration Management V&V process .. 40

8. System V&V processes ... 50
 8.1 Business or Mission Analysis V&V process ... 50
 8.2 Stakeholder Needs and Requirements Definition V&V process ... 50
 8.3 System Requirements Definition V&V process .. 51
 8.4 Architecture definition V&V process .. 52
 8.5 Design Definition V&V process .. 53
 8.6 System analysis V&V process ... 54
 8.7 Implementation V&V process .. 55
 8.8 Integration V&V process ... 56
 8.9 Verification process ... 57
 8.10 Transition V&V process ... 58
 8.11 Validation process ... 59
 8.12 Operation V&V process ... 59
 8.13 Maintenance V&V process ... 60
 8.14 Disposal V&V process .. 61

9. Software V&V processes ... 94
 9.1 Software Concept V&V process ... 94
 9.2 Software Requirements Analysis V&V process ... 94
 9.3 Software Design V&V process .. 95
 9.4 Software Construction V&V process .. 96
 9.5 Software Integration V&V process ... 98
IEEE Standard for System, Software, and Hardware Verification and Validation

IMPORTANT NOTICE: IEEE Standards documents are not intended to ensure safety, security, health, or environmental protection, or ensure against interference with or from other devices or networks. Implementers of IEEE Standards documents are responsible for determining and complying with all appropriate safety, security, environmental, health, and interference protection practices and all applicable laws and regulations.

This IEEE document is made available for use subject to important notices and legal disclaimers. These notices and disclaimers appear in all publications containing this document and may be found under the heading “Important Notice” or “Important Notices and Disclaimers Concerning IEEE Documents.” They can also be obtained on request from IEEE or viewed at http://standards.ieee.org/PR/disclaimers.html.

1. Overview

1.1 Scope

This verification and validation (V&V) standard is a process standard that addresses all system, software, and hardware life cycle processes including the Agreement, Organizational Project-Enabling, Project, Technical, Software Implementation, Software Support, and Software Reuse process groups. This standard is compatible with all life cycle models (e.g., system, software, and hardware); however, not all life cycle models use all of the processes listed in this standard.

V&V processes determine whether the development products of a given activity conform to the requirements of that activity and whether the product satisfies its intended use and user needs. This determination may include the analysis, evaluation, review, inspection, assessment, and testing of products and processes.

The user of this standard may invoke those life cycle processes and the associated V&V processes that apply to the project. A description of system life cycle processes may be found in ISO/IEC/IEEE 15288:2015(E) [B16], and a description of software life cycle processes may be found in ISO/IEC 12207:2008 [B11]. Annex A maps ISO/IEC/IEEE 15288:2015(E) [B16] (Table A.1 and Table A.2) and ISO/IEC 12207:2008 [B11] (Table A.3 and Table A.4) to the V&V activities and tasks defined in this standard.

This standard defines the verification and validation processes that are applied to the system, software, and hardware development throughout the life cycle, including acquisition, supply, development, operations,

1 The numbers in brackets correspond to those of the bibliography in Annex N.
maintenance, and retirement. This standard applies to the system, software, and hardware being acquired, developed, maintained, or reused. The term software also includes firmware and microcode (e.g., Field Programmable Gate Arrays and Programmable Logic Devices). Each of the terms system, software, and hardware includes its associated documentation.

V&V processes consist of the Verification process and the Validation process. The Verification process provides objective evidence for whether the products:

- Conform to requirements (e.g., for correctness, completeness, consistency, and accuracy) for all activities during each life cycle process.
- Satisfy the standards, practices, and conventions during life cycle processes.
- Successfully complete each life cycle activity and satisfy all the criteria for initiating succeeding life cycle activities (i.e., builds the product correctly).

The Validation process provides evidence for whether the products:

- Satisfy system requirements allocated to the products at the end of each life cycle activity.
- Solve the right problem (e.g., correctly model physical laws, implement business rules, and use the proper system assumptions).
- Satisfy intended use and user needs in the operational environment (i.e., builds the correct product).

The Verification process and the Validation process are interrelated and complementary processes that use each other’s process results to establish better completion criteria and analysis, evaluation, review, inspection, assessment, and test V&V tasks for each life cycle activity. The V&V task criteria described in Table 1a through Table 1d explicitly define the conformance requirements for V&V processes.

The development of a sufficient body of evidence requires a trade-off between the amount of time spent and a finite set of system conditions and assumptions against which to perform the V&V tasks. Each project should define criteria for a sufficient body of evidence (e.g., selecting an integrity level), the schedule, and the scope of the V&V analysis and test tasks.

This standard does not assign the responsibility for performing the V&V tasks to any specific organization. The analysis, evaluation, and test activities may be performed by multiple organizations; however, the methods and purpose will differ for each organization’s functional objectives.

ISO/IEC/IEEE 15288:2015(E) [B16] includes tasks for the supplier to execute the agreement according to established project plans and to deliver the product or service in accordance with the agreement criteria. The techniques described in this standard are useful in performing the supplier’s tests and evaluations. Therefore, whenever this standard mentions the supplier’s performance of a verification or validation activity, it is to be understood that the reference applies to the test and evaluation tasks of system development.

1.2 Purpose

The purpose of this standard is to:

- Establish a common framework of the V&V processes, activities, and tasks in support of all system, software, and hardware life cycle processes.
- Define the V&V tasks, required inputs, and required outputs in each life cycle process.
- Identify the minimum V&V tasks corresponding to a four-level integrity schema.
- Define the content of the Verification and Validation Plan.