• Available Formats
    • Options
    • Availability
    • Priced From ( in USD )
    • Secure PDF

      Secure PDF Files

      Secure PDF files include digital rights management (DRM) software. DRM is included at the request of the publisher, as it helps them protect their copyright by restricting file sharing. In order to read a Secure PDF, you will need to install the FileOpen Plug-In on your computer. The FileOpen Plug-In works with Adobe Reader and other viewers. Visit FileOpen to see the full list.

        What you can do with a Secure PDF:
      • Print
      • Search
      • Highlight
      • Bookmark
      Please note that some publishers - including BOMA, IADC and NRC - do not allow printing of their documents.

    • 👥
    • Immediate download
    • $175.00
      Members pay $122.50
    • Add to Cart
    • Printed Edition
    • Ships in 2-3 days
    • $175.00
      Members pay $122.50
    • Add to Cart
    • Printed Edition + PDF
    • Immediate download
    • $298.00
      Members pay $208.60
    • Add to Cart

Customers Who Bought This Also Bought


About This Item


Full Description

This Technical Report conveys the results of API-sponsored research to: (a) quantitatively characterize the internal hydrogen-assisted cracking (IHAC) resistance of modern 2¼Cr-1Mo-¼V steel, in both base metal and weld metal product forms and including the effect of stressing temperature, (b) scope the hydrogen environment?assisted cracking (HEAC) resistance of 2¼Cr-1Mo-¼V base metal, (c) understand the mechanism(s) for the IHAC and HEAC behaviors of Cr-Mo and Cr-Mo-V steels, centered on H interactions with microstructure-scale trap sites, and (d) assess application of data and understanding of IHAC and HEAC to determine the role of subcritical H-assisted cracking on a minimum pressurization temperature estimate relevant to thick-wall hydro-treating reactor vessels.

This work focuses on slow-stable subcritical H cracking, and did not examine the effect of H on the fracture toughness for unstable cracking. The temperature dependencies of internal hydrogen-assisted cracking (IHAC) of 2¼Cr-1Mo-0.3V base plate and weld metal were characterized using slow-rising displacement loading and elastic-plastic fracture mechanics analysis of crack growth measured through direct current potential difference. This test method provides a conservative measure of susceptibility of alloy steels to hydrogen-assisted cracking.