Language:
    • Available Formats
    •  
    • Availability
    • Priced From ( in USD )
    • Printed Edition
    • Ships in 1-2 business days
    • $24.00
    • Add to Cart

Customers Who Bought This Also Bought

 

About This Item

 

Full Description

The design of drinking water treatment plants must consider several objectives and satisfy multiple constraints. The use of mathematical programming techniques can assist in determining the optimal treatment plant design. Unfortunately, common practice assumes that raw water characteristics and model parameters are known (perfect information) when, in fact, they include either natural variation or experimental uncertainty. Including variability and uncertainty in the design framework allows for a robust design. A framework is presented for including variability and uncertainty into the design formulation for particulate removal under conventional treatment (rapid mix, flocculation, sedimentation, and filtration). As an example, a deterministic design that assumes perfect information is performed and shown not to be robust with respect to influent variability and model parameter uncertainty. When influent flow rate variability is explicitly considered, a 20% increase in design cost is observed; however, the resulting design is robust to changes in the flow rate. Includes 10 references, tables, figures.