	1,2-EPOXYBUT	ANE – Oral Ri	isk Assessment	CAS # 106-88-7
PARAMETER		LEVEL	UNITS	DERIVED
BMDL ₀₅ (05% confidence limit at 5% managed level)		8.9	mg/kg-day	From a chronic inhalation study in rats
(95% confidence limit at 5% response level) 10 ⁻⁵ Cancer Risk Level		0.002	mg/kg-day	From the BMDL ₀₅
Oral Slope Factor		0.002	mg/kg-day ⁻¹	From the BMDL ₀₅
Drinking Water Unit Risk				
(at the 1 x 10^{-5} cancer risk level)		0.02	$\mu g/L^{-1}$	From the oral slope factor
TAC (total allowable concentration)		0.06	mg/L	For a 70 kg adult drinking 2 L/day
SPAC				From the TAC, assuming 10 potential sources of
(single product allowable concentration)		0.006	mg/L	1,2-epoxybutane in drinking water
STEL		0.0.6	~	The STEL is set equal to the TAC for a chemical
(short term exposure level)		0.06	mg/L	presumed to be a linear carcinogen.
		poxybutane ma	y occur in its	production and use as a monomer, chemical
EXPOSURE	intermediate, or stabilizer. Exposure can also occur through drinking water, since it has been detected in the			
SUMMARY	extract water of products tested according to NSF/ANSI 61 (2010) at normalized concentrations up to 30			
	ppb.			
	Dunnick, J.K., S.L. Eustis, W.W. Piegorsch and R.A. Miller. 1988. Respiratory tract lesions in F344/N rats			
KEY STUDY	and B6C3F1 mice after inhalation exposure to 1,2-epoxybutane. Toxicol. 50(1):69-82.			
	NTP (National Toxicology Program). 1988. Toxicology and Carcinogenesis Studies of 1,2-Epoxybutane in			
CD I T C A T	F344/N Rats and B6C3F1 Mice (Inhalation Studies). Report #329, NIH Publication # 88-2585.			
CRITICAL	Portal of entry irritation, inflammation, cytotoxicity were observed in F344 rats that inhaled 1,2-epoxybutane			
EFFECT(S)	and these effects progressed to tumors after chronic inhalation.			
UNCERTAINTY FACTORS	No uncertainty factors were applied in this risk assessment, since an oral RfD was not determined. The carcinogenic effects observed in chronic animal studies were analyzed using linear extrapolation.			
TOXICITY SUMMARY	Although oral data are preferred for the derivation of drinking water levels, data for 1,2-epoxybutane were limited to inhalation or dermal bioassays. Inflammatory lesions of the respiratory tract of F344 rats and B6C3F1 mice were associated with an increased incidence of nasal papillary adenomas and alveolar/bronchiolar adenomas and/or carcinomas in rats after chronic inhalation of 1,2-epoxybutane. Inhalation of 1,2-epoxybutane during pregnancy was associated with maternal toxicity in rats and rabbits in the absence of signs of developmental toxicity. The weight of evidence suggests that 1,2-epoxybutane is genotoxic <i>in vitro</i> . Limited <i>in vivo</i> genotoxicity data were identified. Recognizing the lack of oral data, the possibility that equivalent portal of entry tumors would be observed after oral exposure can not be discounted. The increased incidence of nasal but not alveolar/bronchiolar atrophy in treated rats may explain the lack of an increase in nasal carcinomas in rats and suggests that the toxic moiety that reached the alveolar/bronchiolar epithelium was sufficient to initiate the progression of a malignant response but insufficient to induce cell death. Since a genotoxic mode of action cannot be excluded due to positive <i>in vitro</i> genotoxicity data, it was assumed that a dual mode of action involving both DNA-reactive and cytotoxic effects of 1,2-epoxybutane contribute to respiratory tumor development. Thus, a 10 ⁻⁵ cancer risk level based on respiratory tumor development was extrapolated from the chronic inhalation BMDL ₀₅ of 8.9 mg/kg-day based on the combined incidence of alveolar/bronchiolar adenomas and carcinomas in male rats. The human equivalent dose used to estimate the benchmark dose level conservatively assumed a regional gas dose ratio of 1 and 50% inhalation absorption due to the lack of kinetic data to quantitatively estimate these parameters. The 10 ⁻⁵ cancer risk level is considered to be representative and protective of potential portal of entry carcinogenicity after chronic oral e			
CONCLUSIONS	Chronic exposure to 1,2-epoxybutane is associated with tumor development at the portal of entry. The weight of evidence supports that 1,2-epoxybutane demonstrates <i>suggestive evidence of carcinogenic potential</i> . The drinking water action levels developed in this risk assessment are protective of public health since they were based on chronic data from the most sensitive endpoint and laboratory animal species. Additional information regarding the toxicity and kinetics of 1,2-epoxybutane after oral exposure would increase the confidence and reduce the uncertainties associated with the risk levels derived herein.			